
REPORT DOCUMENTATION PAGE
v *

Form Approved
OMB No. 0704-01'88

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leaveblank) 2. REPORT DATE

14.Oct.98
3. REPORT TYPE AND DATES COVERED

THESIS
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

2D LT TILBURY CHAD A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NORTHEASTERN UNIVERSITY
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

98-095

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words!

1999 OK 16 061

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 233.18
Designed using Perform Pro, WHS/DIOR, Oct 94

AN EFFICIENT, WAVELET BASED,
VARIABLE STRUCTURE NETWORK

Chad Allen Tilbury-

Submitted to Northeastern University,
College of Computer Science June, 1998,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Computer Science

Abstract
Learning systems, specifically neural networks trained

using supervised learning, have become widely accepted and in
many cases provide good approximations to the given target
function. One of the parameters that tends to make a large
difference in the output of the network is its size, or
number of units that comprise the network. However, there is
often no easy way to determine how large a network should be.
A way to combat this problem is through a variable structure
algorithm.

Variable structure means that in the course of learning
the data, the network also learns the best way to organize
itself to represent the data. Thus the number of units and
the structure of those units are driven by the
characteristics of the data. Wavelets have been found to
provide several properties that make the construction of a
variable structure algorithm approachable.

Wavelets exhibit good localization in both the spatial
and frequency domains. The class of wavelets explored in this
thesis is from the family of orthonormal wavelets.
Orthonormality implies that there is no redundancy in the
information stored by these wavelets. This creates basis
units that can be added or removed without affecting their
counterparts, lending themselves to additive types of
variable structure. It also means that the data is stored in
an efficient manner.

Using orthonormal wavelets and a Recursive Least Squares
based training algorithm allows for the creation of a
hierarchical, multiresolution network that facilitates
variable structure. The challenge of this thesis was to
create a variable structure network based on the orthonormal
Haar wavelet which maintains the above properties while being
fast and efficient.

Technical Supervisor: Dean E. Cerrato
Title: Senior Member of Technical Staff,

Draper Laboratory

Thesis Supervisor: Ronald J. Williams
Title: Professor of Computer Science

AN EFFICIENT, WAVELET BASED, VARIABLE
STRUCTURE NETWORK

Chad Allen Tilbury

B.S. Computer Science

United States Air Force Academy

(1996)

Submitted to the College of Computer Science

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
at

NORTHEASTERN UNIVERSITY

June 1998

© 1998 Chad A. Tilbury. All rights reserved.

The author hereby grants permission to Northeastern University to reproduce
and to distribute copies of this thesis document in whole or in part.

Signature of Author. CArl M^1M„U
ege of Computer Science

June 1998

Approved by_
Dean E. Cerrato

Technical Supervisor, Charles Stark Draper Laboratory

Certified by_ iLM I. fj)-ldz.
Ronald J. Williams

Associate Professor of Computer Science

BxIC QUALx'^i iL.^iZ^iim

AN EFFICIENT, WAVELET BASED,
VARIABLE STRUCTURE NETWORK

Chad Allen Tilbury

Submitted to Northeastern University,
College of Computer Science June, 1998,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Computer Science

Abstract
Learning systems, specifically neural networks trained

using supervised learning, have become widely accepted and in
many cases provide good approximations to the given target
function. One of the parameters that tends to make a large
difference in the output of the network is its size, or
number of units that comprise the network. However, there is
often no easy way to determine how large a network should be.
A way to combat this problem is through a variable structure
algorithm.

Variable structure means that in the course of learning
the data, the network also learns the best way to organize
itself to represent the data. Thus the number of units and
the structure of those units are driven by the
characteristics of the data. Wavelets have been found to
provide several properties that make the construction of a
variable structure algorithm approachable.

Wavelets exhibit good localization in both the spatial
and frequency domains. The class of wavelets explored in this
thesis is from the family of orthonormal wavelets.
Orthonormality implies that there is no redundancy in the
information stored by these wavelets. This creates basis
units that can be added or removed without affecting their
counterparts, lending themselves to additive types of
variable structure. It also means that the data is stored in
an efficient manner.

Using orthonormal wavelets and a Recursive Least Squares
based training algorithm allows for the creation of a
hierarchical, multiresolution network that facilitates
variable structure. The challenge of this thesis was to
create a variable structure network based on the orthonormal
Haar wavelet which maintains the above properties while being
fast and efficient.

Technical Supervisor: Dean E. Cerrato
Title: Senior Member of Technical Staff,

Draper Laboratory

Thesis Supervisor: Ronald J. Williams
Title: Professor of Computer Science

Acknowledgments
Well let's see. Where shall I begin? I always thought

that this would be a fun page to write, but at this point any-
kind of writing whatsoever is just drudgery. However, I do
know that this page will be significantly less cynical than
the last acknowledgments I wrote two years ago. Maybe I've
changed, but I like to think that I have just enjoyed myself
a hell of a lot more.

The first thanks needs to go out to my progenitors. See
guys, I increased my vocabulary in Boston! Mom and Dad,
thank you for all you have done for me these last two years.
Although you had no real input in where the Air Force would
send me, I know how much it pained you to have your only son
on a distant shore. It must have been even worse that he
fell in love with the dreaded East Coast!! Well as luck
would have it, D.C. is no closer to home. It does however
have a higher crime rate so at least that will keep life
interesting. Grandma, Chuck and Carolyn, thanks for coming
out to visit and at least trying to understand what I found
so charming about this city with the suicidal drivers and out
of this world prices.

Next come the friends which really made my entire Boston
experience. Although I never saw you at work (I think I made
it to one lunch!), we had enough good times outside of Draper
to keep things sane and worthwhile. Besides, what fun is
beer when you have to go back to work in thirty minutes??
Tony "don't make me fight you" Giustino and Ted "I will never
meet my wife in a bar" Conklin— was it everything we dreamt
of? Can you believe that we all managed to make it here? It
was great living with you guys, but I tell you someone was
dirtying those dishes!! Just like the phantom crapper in
London, someone had to do it!! Its hard to believe that we
spent two years in a coastal town without ever getting out on
a real sailing vessel, but there will be plenty of time (and
money) for that. Ted, you can come play on our boat if the
wife signs a permission slip!! Chris "postprandial" Dever -
well we never did buy those motorcycles, but at least we are
still alive. Beau "Shoot the brain" Lintereur, Rudy "no keg
stands while I'm driving" Boehmer, Gordon "tell me about
older women" Maas, Corey "where are the chicks, eh?" and Dave
"man that snow is packed!" - you guys were a blast. Whether
it was skiing, camping, hiking, or just imitating the Irish,
I think that we really lived it up. Did anyone ever meet
those nine girls in the penthouse above us?? Speaking of
girls - Nancy "the total package" Risch, I am thankful for
every day we got to spend together. Who would have ever
thought that love was real?? Sorry I slowed down and got
boring in the last months- but honey, I'm getting old! You
should all notice that last names were included above in case
any of you MIT guys make it big. I deserve to be at least
famous by association. Don't forget to support your old

buddy in his old age. There are very few wealthy bartenders
in the Caribbean!!

Now on to the boss men. Dean, thanks for being an
incredible advisor. You truly let me find my own way through
this thesis thing. You forced me to learn, even when I took
three times as long to do it!! You were a big part of my
learning experience here at Draper and I thank you for that.
Ron, it was truly an honor to work under you the last two
years. I came to Northeastern because you were there, and I
will leave much more enlightened due to the time you spent
with me.

Finally, I would like to thank Draper Lab for giving me
this amazing opportunity.

This thesis was prepared at The Charles Stark Draper

Laboratory, Inc., under Independent Research & Development

(IR&D) DFY97 Project #814: Learning Toolbox Development and

DFY98 Project #927: Autonomous Systems. Draper Laboratory's

generous financial support for this project is greatly

appreciated.

Publication of this thesis does not constitute approval

by Draper Laboratory or Northeastern university of the

findings or conclusions contained herein. It is published

for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The

Charles Stark Draper Laboratory, Inc., Cambridge,

Massachusetts. "\

Permission is hereby granted by The Charles Stark Draper

Laboratory , Inc., to Northeastern University to reproduce

any or all of this thesis.

VI

Table of Contents
Acknowledgments v

Table of Contents vii

1 Introduction 1:L

1.1 Problem Description H

1.2 Thesis Overview 14

2 Background 17

2.1 Wavelets 17

2.1.1 General Wavelets 18

2.1.2 Orthogonal Wavelets 24

2.1.2.1 The Haar Wavelet 27

2.1.2.2 The Mexican Hat Wavelet 29

2.1.3 Orthogonal Wavelets in Multiple 30
Dimensions

2.2 Multiresolution 32

2.3 Methods of Training 37

2.3.1 Gradient Methods 38

2.3.2 Least Squares 41

2.3.3 Recursive Least Squares 43

2.3.3.1 Weighting Observations in RLS 43

2.3.3.2 Summary of RLS 45

2.4 Putting It All Together 46

A 1-D Wavelet Based Variable Structure Learning 51
Algorithm

3.1 The Basic Algorithm 51

3.1.1 Stage One: Finding the Hit Wavelets 53

3.1.1.1 Wavelet Description 54

3.1.1.2 Data Normalization 54

vu

3.1.1.2.1 Truncating Wavelets 55

3.1.1.3 Multiresolution 58

3.1.1.4 Finding Wavelet Hits for
Compactly Supported Wavelets 60

3.1.2 Stage Two: Compute Network Output and 61
Approximation Error

3.1.3 Stage Three: Train and Update Wavelets 63

3.1.3.1 Training Wavelets 64

3.1.4 Generalizing the Basic Algorithm 67

3.1.4.1 Modifications Necessary for 67
Overlapping Wavelets

3.1.4.2 Updating the Scaling 69
Coefficient

3.1.5 Summary of the Basic Algorithm 69

3.2 Simple Variable Structure 71

3.2.1 Modifications to Stage One 72

3.2.1.1 The New Wavelet Description 72

3.2.1.2 Determining Wavelet Data Hits 73

3.2.2 Modifications to Stage Two 75

3.2.3 Modifications to Stage Three 77

3.2.4 Variable Structure Results 79

3.3 Algorithm Enhancements 83

3.3.1 Frequency Data 83

3.3.2 Inactive Wavelets 88

3.3.3 De-coupled RLS Training 91

3.3.4 Pruning 96

4 Multi-dimensional Networks 101

4.1 Multiple Inputs 101

4.1.1 Determining Hit Wavelets With 101

vui

N-Dimensions

4.1.2 Computing Wavelet Statistics With N- 103
Dimensions

4.1.3 Training N-Dimensional Wavelets 105

4.2 Multiple Outputs 106

4.2.1 The Maximum Network Method 108

4.2.2 The Minimum Network Method 111

4.3 The Curse of Dimensionality 111

4.4 Some Results Using Multi-Dimensional Inputs 113

5 Reinforcement Learning Experiments 121

5.1 The Puck on the Hill Problem Description 121

5.1.2 Normalizing the Data for Use with Our 122
Network

5.2 Learning the State Transition Function 123

5.3 Learning the Puck on the Hill Problem 127

5.3.1 Testing the Network with 128
Non-stationary Data

5.3.2 The Reinforcement Learning Problem 132

5.3.2.1 Results of the Puck on the Hill 135
Problem

6 Summary

6.1 Conclusions 139

6.1.1 Overall Results 139

6.1.2 Final Assessment 141

6.2 Recommendations for Future Research 141

6.2.1 High Dimensional Data 141

6.2.2 Non-Stationary and Adverse Data 142

Appendix A Least Squares and the Discrete Wavelet 145
Transform

References 149

IX

1 Introduction

1.1 Problem Statement

Learning systems, specifically neural networks trained

using supervised learning, have become widely accepted and in

many cases they provide good approximations for, the given

input. However, neural networks are still often seen as a

"black box" which contains many variables that must be

manipulated to achieve the right conditions for good output.

To make matters worse, small deviations in the type or degree

of the data may call for an entirely new set of parameters

for acceptable output.

One of the parameters that tends to make a large

difference in the output of the network is the size, or

number of units that comprise the network. In multi-layer

perceptron architectures this factor decides how much

representational power the network has, including the maximum

state space dimension that can be represented. In other

types of networks such as radial basis and basis/influence

networks, the number of units limit the portion of the state

space that can be learned and the granularity of the state

space representation. One way to eliminate this problem is

to ensure that the network has more than enough units to

represent the state space. How can this be determined?

Heuristics can be formed based on various factors of the

input data, but then we are back to an ad hoc solution that

we cannot be sure is optimal. Additionally, if it does prove

11

to be correct, how can we be sure that it is efficient? A

large number of unnecessary units can seriously affect

performance and in some cases, could lead to memorization and

bad generalization of the data.

An intelligent way to combat this problem of network

size is through a variable structure algorithm. Variable

structure basically means that in the course of learning the

data, the network also learns the best way to organize itself

to represent the data. Thus the number of units and the

structure of those units will be driven by the

characteristics of the data. Variable structure needs to be

differentiated from self-organizing structure. Self-

organization models, such as Kohonen networks and others that

use competitive learning have the ability to alter their

structure according to the data received [8]. The difference

is that they still have an initial network size and only have

the faculties to change what they are originally given. They

do not have the means to add new units as required by the

data. Thus a variable structure algorithm has the potential

to start from nothing and build the correct network size and

structure for the given data.

Wavelets provide several properties that make the

construction of a variable structure algorithm approachable.

Wavelets are not new in the scientific community but they are

relatively new to the field of artificial intelligence and

especially neural networks. Wavelets allow good localization

in both the spatial and frequency domains meaning that they

12

are useful in both local and global prediction. The class of

wavelets explored in this thesis are from the family of

orthonormal wavelets. Orthonormality implies that there is

no redundancy in the information stored by these wavelets.

This creates stand-alone basis units that can be added or

removed without affecting their counterparts, lending

themselves to additive types of variable structure. It also

means that the data is stored in an efficient manner.

Since wavelets have such a simple construction, the

available training methods are diverse. They range from

backpropagation to Least Squares methods. This thesis uses

the method of Recursive Least Squares (RLS) to train units.

RLS offers an optimal solution for the data it has seen. It

also offers nice properties like delayed computation, on-line

training, easy overlapping of units, and it only requires one

pass through the data.

Using orthonormal wavelets and RLS together allows for

the creation of a hierarchical, multiresolution network that

facilitates variable structure. Of course, there is a

tradeoff for the additional feature of variable structure.

It comes in the form of more algorithm complexity.

Performance drops as the algorithm is forced to keep track of

more data and learn things other than the data state space.

To be useful the performance loss needs to be minimal.

Therefore the challenge of this thesis is to create a

variable structure network based on orthonormal wavelets

13

which maintains the above properties while being fast and

efficient.

The efficiency and performance of this variable

structure wavelet network will be judged through

representative multi-dimensional problems.

1.2 Thesis Overview

This thesis begins with background information in

Chapter 2. The information provided is presented as a

tutorial on the concepts that the algorithm will employ in

subsequent chapters. Section 2.1 starts with simple

wavelets, transitions to orthogonal wavelets and then gives

specific examples. A multiresolution structure is introduced

in Section 2.2 and its advantages are discussed. Next, the

options for network training algorithms are presented and

critiqued. Finally, Section 2.4 looks at how other

researchers have put together learning networks with the

above components.

Chapters 3 and 4 constitute the real "meat" of the

thesis by presenting our variable structure algorithm. In

Chapter 3, we present a very basic algorithm consisting of

many of the items discussed in the previous chapter. Section

3.1 starts with an introductory, one-dimensional algorithm

that can be built upon in later sections. The next Section

modifies the simple algorithm to implement a basic form of

variable structure. Finally, Section 3.3 looks at a variety

of enhancements that can be added to the simple variable

14

structure algorithm to both optimize it and tailor it to the

needs of the user.

Our one-dimensional network is expanded in Chapter 4.

Section 4.1 makes the requisite modifications to allow the

network to be used with multiple inputs. Multiple outputs

are added in Section 4.2 and two different methods for

dealing with them are presented. The next Section delves

into the "curse of dimensionality" and talks about the

disadvantages of our network in multi-dimension space. The

final section in Chapter 4 shows some multi-dimensional

results.

At the conclusion of Chapter 4 our variable structure

algorithm has been presented in its entirety. Thus far only

simple approximations necessary to explain the concepts have

been shown. The next step is to prove its usefulness on some

real applications and see what the results are. Chapter 5

discusses these experiments in detail. Finally, Chapter 6

summarizes the work in this thesis and gives recommendations

for future research.

15

16

2 Background
2.1 Wavelets

Wavelets are the foundation of the work in this thesis,

so it is necessary to talk about them in some detail. A

wavelet is a local mathematical function that can represent

data according to the components of its frequency. They are

represented with the notation ^(x), with a and b being

coefficients, and x being the independent variable. Wavelets

began as pure mathematical tools but now they have been

absorbed into many disciplines and are being used for

everything from human vision and image analysis to

fingerprint compression [6]. My work takes place in the

context of using wavelet basis functions to approximate a

function in a variable structure neural network. I chose to

use wavelets because their attributes mesh nicely with this

type of algorithm.

There are a large number of different wavelet functions.

Some categories are smooth wavelets, orthogonal wavelets,

wavelets with compact support, etc. However, some attributes

are common to all varieties. Wavelets are unique because

they provide good approximating capability in both space and

frequency. This is due to their ability to change their

shape and size according to the application. In addition to

this, many wavelets are easy to create and modify, making

them very easy to use. It has also been shown that wavelets

can represent many types of functions much more efficiently

than other methods such as Fourier analysis [11]. This can

17

be even further improved by choosing wavelets particularly

suited for the type of function being represented, such as

smooth, continuous wavelets for a smooth function. Pruning,

or thresholding wavelets have also been used to give good,

concise, representations. Of course, individual types of

wavelets provide their own benefits as well.

2.1.1 General Wavelets

The simplest wavelet available is any function that is

half above and half below the input plane (has a zero mean).

Stated mathematically:

jVab(x)dx = 0 (2.1)

0.8

0.6 -

0.4

0.2 -

-0.2

-0.4

•0.6

-0.8
-2

Figure 2.1 A Sample Wavelet Function, x¥ = -xe~x*il

18

Wavelets are typically represented in terms of a Mother

Wavelet [5],

**(*)-|flT^^) (2.2)

where

a = dilation coefficient

b = translation coefficient

The dilation coefficient, a, indicates how much the wavelet

is compressed or stretched. This determines the size of the

wavelet's support. The translation coefficient, b, displaces

the wavelet to the desired position. By varying these

coefficients, an infinite set of basis functions can be

generated from which to construct more complex functions.

Due to this, (2.2) is coined the Mother Wavelet.

Although we are using a simple wavelet, the transform

for representing a function with wavelets, i.e. computing

coefficients for the basis functions, is not necessarily

simple. One way of doing this is the Continuous Wavelet

Transform:

coeff (a, b) = J f (x)^ (x)dx (2.3)

where

f(x) = function to approximate

Looking at (2.3), we see that the input function is being

projected onto every instance of the Mother Wavelet. This

gives us an infinite number of wavelet coefficients. Of

course much of the information recorded by these coefficients

19

is redundant since each wavelet is only infinitesimally

different from its neighbors. This oversampling is necessary

because there is no way to determine the dependencies Of

simple wavelets. Therefore, every combination must be tried.

This is the opposite of an orthogonal transform, where there

are no dependencies.

The continuous wavelet transform gives a perfect

reconstruction of the input function, but it is only useful

in a mathematical sense. In practical applications it is

often discretized, trading increased efficiency for a lower

quality function approximation. It is often used for

recognizing signal characteristics, but it is still much too

slow and inefficient for a variable structure algorithm.

Since Fourier Analysis is a more familiar approach, it

might be helpful to point out the similarities and

differences between the two methods. First, both use basis

functions to approximate. Wavelets are analogous to the

sines and cosines of the Fourier transform and the Fourier

series can be compared to the wavelet coefficients. Also,

both transforms are linear and take into account both time

and frequency. However, it is the differences that make

wavelets desirable. Equation 2.4 contrasts the equation

for a Windowed Fourier Transform with that of a Wavelet

Transform [9].

nx)£^-TKte vs. **(*)-IflT^i—) (2.4)

20

GO

m
Wavelet Transform

(D t

m
Windowed Fourier Transform

Figure 2.2 Wavelet vs. Windowed Fourier Transform

21

Figure 2.2 is the graphical depiction of Equation 2.4 with

each box being an individual basis function. It shows the

overriding difference between the two transforms: the basis

functions for the Windowed Fourier Transform remain constant

in size with a changing frequency, (ö, while the scale

frequency, a, of the wavelet basis functions controls' the

size of the function.

The support of a Fourier analysis is global and

unbounded. This indicates that it will be less effective at

approximating discontinuities or sharp spikes, etc. Wavelets

are localized in time which allow them to excel in these

types of functions by creating small, high frequency wavelets

to deal with them. Understandably this results in much fewer

basis functions than in the Fourier case. This quality is

what makes wavelets useful in compression and removing noise

in functions. Wavelets are equally advantageous for lower

frequency data since their ability to dilate also makes them

local in frequency. By utilizing both of these advantages, a

wavelet based system can approximate by using small, high

frequency wavelets for local features and large, low

frequency wavelets for the more global features. Figure 2.3

shows a function approximated using relatively low frequency

wavelets and then approximated again with the addition of

high frequency wavelets. It is clear that the low frequency

wavelets provide a general view of the function while the

22

1

o.e

o.a

O.T

o.e

o.s

O.A

0.3

0.2

O.I

o

' _ --'

-*=■ ̂

f ^x
r \

A
/

/

£
-7^

\

\
\ X

\
"ö^ä ötä 5^i öts Ö7e 577 Sta o.o

Maximum Scale = 3

Maximum Scale = 5

35
-2°, so

ELL 0.1 0.2

3S

3

3

3

tbi
"öte 5!* otS o'.e 5/? 575 o.o

i\
-20 I
BOr

O

^ 5?2 5^3 S!* ö"fe ote 5tr 5^5 o.o

5ti 5?2 öiä 5^5 S!B s!e 5^7 s!a o.o

"ota 5!3 5^3 O!G 5te 5^7 5tS o.o

jti 5?5 5?3 o'.* O'.E o.e o.v l o.e o.o

Figure 2.3 Approximation of Sin(ftx)

23

additional high frequency wavelets flesh out the

approximation.

2.1.2 Orthogonal Wavelets

The discovery of orthogonal wavelets is a main reason

that wavelets are so prominent today. In this case, two

wavelets are orthogonal if their inner product -is equal to

zero. In equation form:

<W^(x), Ya.b,(x)> = /^(x) Wa,b.(x) dx = 0 (2.5)

where

a#a' or b£b'

Orthogonal wavelets also have another orthogonal function

associated with them called the father, or scaling function.

The name is misleading since the function can be derived from

the mother wavelet, but the scaling function provides the

wavelet functions with a bias value to be used during

approximation. Remembering that the definition of wavelets

implies that they have a zero mean, it is apparent why a

scaling function is necessary for approximation. Scaling

functions will be covered in more detail in section 2.2. The

wavelet and scaling functions define an orthogonal basis,

meaning that any function can be composed of a linear

combination of these orthogonal basis functions [11].

Early in the development of wavelet theory, the

mathematics of wavelets were understood, but their

application was extremely slow and inefficient. Orthogonal

wavelets remedied this because the computation of the

24

coefficient for any wavelet is independent of any other

computations. Essentially, each basis function can be de-

coupled from the rest. The mapping between the inputs and an

orthogonal basis is simple. If we assume a one input, one

output function to be learned, the mapping is:

f(x) = Z, c&ix) (2.6)

where

f = output

i = wavelet number

ct = wavelet coefficient (unknown)

©i = wavelet evaluated at the input

This equation indicates that the function is equal to the sum

of the wavelets at the given points, multiplied by their

weights. In other words, this is the definition of a basis

function approximation. Assuming in input/output points and n

wavelets, we can put the right hand side into matrix form by

making a vector of coefficients of size n and a matrix of

size m x n in which every input is evaluated at every

wavelet. Using this new matrix form we get:

AW - ®»(*«)J \?*J

or f(x) = Ac (2.7)

Now all that is necessary is to solve for c.

£ = A-*£ (x) (2.8)

25

Since A will not always be invertible, we need a generalized

inverse giving us:

£ = A+f(z) or (A^'W (using Least Squares) (2.9)

This gives us the optimal coefficients for all n wavelets

being used to approximate f(x) assuming a large amount of

regularly spaced input [1]. It is apparent that this is much

easier than the continuous wavelet transform. Of course, for

a large amount of data and a large number of wavelets, this

approach becomes unworkable because of the size of the

components. Techniques such as multiresolution (covered in

Section 2.3) must then be used to break the computations up

without sacrificing accuracy.

In a neural network structure, orthogonality means that

we can have autonomous units that can be added or removed

without affecting the other units. By being independent,

these wavelets also have the advantage of allowing no

redundancy in the storage of information. This contrasts

with the continuous wavelet transform which required infinite

redundancy. While the lack of redundancy is not desired in

some disciplines, it is a great boon for the work in this

thesis since we are looking for an efficient network

structure. There are a plethora of orthogonal wavelets to

choose from. The two used in this thesis are the Haar

wavelet and the Mexican Hat wavelet.

26

2.1.2.1 The Haar Wavelet

The Haar wavelet is the simplest orthogonal wavelet. It

is a piece-wise constant function that is defined as having

the value 1 on the half-open interval [0,1/2) and the value

-1 on the half-open interval [1/2, 1).

2
Haar Wavelet Function

1.5

1

0.5

0

-0.5

■

■

-1

-1.5 ■

2
Haar Scaling Function

1.5

1

0.5

0

-0.5

■

■

-1

-1.5

-2L -1

Figure 2.4 The Haar Wavelet and Scaling Function

It has been proven that any continuous function can be

approximated to arbitrary accuracy by Haar wavelets given an

unlimited number of wavelets of varying locations and

frequencies [11].

Haar wavelets are the most computationally efficient of

the orthogonal wavelets to date. Since they are a square

function, it is easy to compute their values at the inputs.

27

The Haar scaling function is simple, being defined as having

the value 1 on the half-open interval [0,1). Finally, Haar

wavelets have compact support. Thus they do not require

overlap as many other wavelets do. This results in a large

savings of time and space since interactions between

overlapping wavelets do not have to be computed.

In order to prevent confusion, it needs to be said that

interactions between wavelets can occur while still retaining

orthogonality. Wavelet orthogonality simply indicates that

if you remove an orthogonal wavelet, information is lost that

no other wavelet can compensate for. Therefore, the

coefficients of the remaining wavelets will be unchanged.

Even though the Haar wavelet can approximate any

continuous function, many researchers have found it not to be

very natural in this mode [11]. Instead, they prefer to use

smooth basis functions that may be able to approximate the

smoothness of the function as well as the actual values. The

Mexican Hat wavelet is one of these and is covered in the

next section. Often the Haar function is relegated to

Boolean type functions. In my work I have found the

piecewise-constant Haar wavelet to approximate smooth

functions almost as well as smooth basis functions. This

fact coupled with the impressive savings in computation time

makes Haar wavelets my first choice of basis function in this

thesis.

28

2.1.2.2 The Mexican Hat Wavelet

The Mexican Hat function gets its name from it shape. It

was discovered by the field of vision analysis and it is

still in use today. The wavelet equation is

() = ^7C-y\l-x2)e-xl/2 (2.10) .
-v/3

This equation is the second derivative of the Gaussian

function, e'xl/2, normalized so that its L2 norm is equal to 1

[4].

Mexican Wavelet Function Mexican Hat Scaling Function

Figure 2.5 The Mexican Hat Wavelet and Scaling Function

I chose to use the Mexican Hat wavelet for several

reasons. First, it is easy to compute. While the equation

is somewhat lengthy, it is much more desirable than many

other wavelets which must be computed by the iteration method

[4]. The ease of computation also applies in the case of the

29

wavelet's scaling function, which is simply the Gaussian.

The Mexican Hat wavelet is smooth, which should allow it to

approximate and generalize smooth functions easier [11].

This idea is illustrated in the fact that vision analysis

cannot use the Haar wavelet due to artifacts caused by its

discontinuities that are left in the reconstruction. Thus it

is included in this thesis because it is one of the more

computationally efficient wavelets to construct and it should

provide a good measure against which to judge the performance

of the Haar wavelet. The Mexican Hat is a wavelet function

that requires the basis functions to overlap. This results

in a significant performance drop when compared to wavelets

such as the Haar function. So what we are interested in is

if the Mexican Hat approximation is good enough to compensate

for this decrease in efficiency.

2.1.3 Orthogonal Wavelets in Multiple Dimensions

So far, we have only been discussing wavelets of one

dimension. These wavelets are useful for a one input

network, but little else. Since most applications require

several input variables, multi-dimensional wavelets are a

necessity. Luckily, orthogonal wavelets are easily extended

to any dimension.

Extension to a n-dimensional basis begins with the one

dimensional mother wavelet and scaling function. The basis

is found by taking the tensor products of the n-1 dimensional

basis with the one dimensional mother wavelet and scaling

30

function [5] . As an example, when expanding to two

dimensions the resulting equations for the basis will be:

Given ¥(x), $(x) :

OCx,) ¥(x2)
0(x,) GfcXKx,) ^»(xO^x^)

Y(x,) ¥(x,)0(x2)
xF(x1)^(x2)

Scaling Function : <S>(xlx2) = &(xl)®(x2) (2.11)

Wavelets:

f(W) = <D^mJC2) (2.12)

Y2(^2) = ^(x1)OU2)

>P3(W) = ^)^2)

This technique will expand any orthonormal wavelet basis to

any dimension. An excellent proof of this can be found in

Daubechies' paper [5].

From the method above it follows that the number of

wavelets increases exponentially with the dimension. For

dimension d, there will be 2*-l wavelets and one scaling

function. The scaling function is just the tensor product of

the n original scaling functions while the wavelets are the

combinations of n products of the scaling and wavelet bases.

These additional wavelets correspond to the different

orientations of the wavelet in that dimension that are

necessary for the basis to completely span the function

space. However, this is not as much of a limitation as it

appears to be. It is often not necessary for every wavelet

in the basis to be used in a specific approximation. A

31

variable structure algorithm can be employed to only activate

the wavelets that are necessary for the approximation. This

is often significantly less than the total number of

available wavelets.

2.2 Multiresolution

Multiresolution is a decomposition technique which

allows a hierarchical representation of a set of inputs. The

input is decomposed into different resolutions, each at a

different scale, and is represented by the difference of

information between each scale. Multiresolution was derived

from multiscale algorithms used in machine vision and image

processing. These methods analyzed signals at different

resolutions taking advantage of the fact that images tend to

show different things depending on the resolution they are

viewed at. However, the methods were confined to a small

number of fields due to their inefficiency. Since there was

no way to isolate the information in one resolution from the

information in the other resolutions they tended to be very

redundant.

Wavelets seemed to be a logical choice for a better

implementation of multiresolution since they are adept at

recording differences. The dilating characteristics of the

wavelets allow some to grow large to adapt to low frequencies

and some to contract to capture the high frequencies. As the

wavelets get smaller and smaller, they capture the image at

smaller and smaller resolutions. Of course, ordinary

32

wavelets do little for the efficiency issue since they also

record redundant information. Orthogonal wavelets were

needed to eliminate this redundancy. Once they were

discovered it quickly became apparent that the two ideas of

orthogonality and multiscale were well suited to each other.

The first fast, efficient method for determining a wavelet

decomposition of a function soon followed and it was dubbed

multiresolution analysis [10].

As we know, orthogonality implies that each wavelet

coefficient is completely independent of any other

coefficients in the analysis. This means that in any

function decomposition, each wavelet encodes a portion of the

function that no other wavelet does. Mallat presented his

multiresolution algorithm as a sequential progression from

the finest details to the coarsest (from the smallest dilated

wavelets to the largest) but this is not the only way it can

be performed [10]. Since the wavelets only encode specific

portions, multiresolution can also be done from coarse to

fine, which is much more amenable to implementation within a

variable structure network like the one presented in a later

chapter.

Wavelets are most adept at representing details, or the

changes from one representation to another. In order to

allow them to just concentrate on these details, another

function is necessary to record the general trends of the

function. This entity is the scaling function. The scaling

function is basically "chosen to satisfy continuity,

33

smoothness, and tail requirements" of the chosen wavelet

[11]. It basically gives the analysis a place to start out

from, or bias, by roughly approximating the given function.

An interesting thing about the scaling function is that it

can be created from the mother wavelet [6]. So for

multiresolution analysis, all that is needed is the choice of

one mother wavelet and the rest can be calculated from there.

It is easy to see the simplicity that makes this type of

analysis so intuitively pleasing.

After the mother wavelet is chosen and the scaling

function is determined, the next step in the altered version

of multiresolution analysis is to choose how coarse of a

representation is necessary. This determines how large the

scaling and wavelet functions will be that the representation

will start out with. In this step it is easy to see why we

want to go from coarse to fine since in Mallat's algorithm it

is necessary to choose how fine a resolution is necessary

which is exactly what a variable structure algorithm is

trying to determine! Now the signal is divided into two

portions: a smoothed, generalized portion and the remainder

of the function which I will call the details. The smoothed

portion is provided by the scaling function and the wavelets

encode the details.

At the next iteration of the algorithm we have a

representation of the original function but it may still be

rough since the wavelets at that level are large (equal to

the coarseness chosen) and thus only the details of that size

34

were encoded. Therefore it is necessary to add smaller

wavelets. The next level of wavelets consists of double the

number of wavelets that are half as wide. This allows them

to fit into the same area as the previous level's wavelets as

shown in Figure 2.6.

Fine

Coarse

Figure 2.6 Multiresolution Wavelet Analysis

With each successive iteration after the first, the

general portion will be the previous approximation (the

scaling function plus the wavelets) and the new wavelets will

be used to encode as much of the difference between that

approximation and the actual function as possible. The

process of adding twice as many wavelets at each successive

resolution level continues until the function is represented

to some specified level. Each successive level of resolution

brings the approximation closer to the original function.

35

The number of wavelets are doubled each time to stay

consistent with the Shannon sampling theorem which states

that a signal must be sampled at twice its frequency. As the

frequency is increased, the number of samples, or wavelet

coefficients must be doubled. At the end of the process, we

are left with a scaling function coefficient from the

coarsest pass and a hierarchy of wavelet coefficients.

Looking at this, we see that the smoothed function could

also be represented as the low frequency data of the function

and the details could be the high frequency data. This

brings about the idea of using filters. The scaling function

is a low pass filter and the wavelets constitute various band

pass filters. Each level of the multiresolution analysis now

has its own pair of filters. Whatever one blocks, the other

allows (at that resolution). At each iteration, the

frequency of the band pass filter is doubled and convolved

with the remainder of the input data from the previous

filters, resulting in the new set of coefficients for that

resolution. Of course, using filters eliminates the need for

wavelets altogether. I don't use this implementation, but it

is one more perspective on multiresolution analysis and many

have suggested that it could make the technique very fast if

implemented in hardware [6] .

Multiresolution provides a very good model for variable

structure learning using wavelets. It has inherent

flexibility in that it does not depend on any specific

wavelet. It is also very fast and efficient. When used in

36

the coarse to fine framework, it provides the best

representation of a function possible so far, at any time

during the approximation. This is true because each

resolution level just adds a little more accuracy to an

already approximated function. This can be particularly

helpful in time-critical applications where an approximation

is given a certain time limit and it must present the best

solution possible at that limit. Perhaps the best attribute

of this multiresolution method will become apparent in

Chapter 3 when the actual variable structure algorithm is

discussed. Multiresolution allows orthogonal wavelets to be

chosen from any level, reassembled into the desired

structure, and trained easily.

2.3 Methods of Training

It is important to note that multiresolution analysis

has nothing to do with actually determining the coefficients

of the set of wavelet basis functions. Its purpose is to

break the network calculations down into a computationally

feasible manner that gives the same results as if a full

wavelet transform were performed on the data.

Multiresolution provides a structure for the wavelets that is

independent of the training method. This is not to say that

the training method is unimportant. It just plays a

different role. Training deals with optimization and data

fitting. Given a specific structure, a training algorithm

works to optimize the structure's parameters. In the

37

subsequent sections I have chosen to present the two most

common ways to train wavelet networks, Gradient methods and

Least Squares, as well as Recursive Least Squares which is

employed in this thesis.

2.3.1 Gradient Methods

Gradient methods have been a staple in neural networks

since they were applied to multi-layer perceptrons in the

1980's. The best way to understand them is through imagining

an error surface like the one in Figure 2.7.

0.7 0.8 0.9 1

Figure 2.7 Error Surface

If we let J be some measure of the total error and P be a

space created by all of the adjustable parameters in the

network, then Figure 2.7 is the error as a function of the

38

parameter values. On this surface there will be some set of

parameter values which will give the minimum value for J, or

the total error of the network.

Of the many flavors of gradient descent algorithms,

Steepest Descent is the simplest and most widely used. A

gradient gives the direction of maximum increase of the

function at that point. It is basically the vector of the

partial derivatives of y given x. In our case the gradient

is 3J/9P and it is shown on Figure 2.7. A Steepest Descent

algorithm attempts to minimize J by finding the negative

gradient (since we want the maximum decrease of J at the

points P) and adjusting the parameters to go in that

direction. Since it uses the negative gradient, a small

change in that direction is likely to reduce the current

error by the greatest amount.

Backpropagation is a very popular method for computing

network parameters using the gradient. It provides us with a

nice, general model for looking at how a gradient descent

algorithm can be implemented.

Backpropagation basically divides the calculation of the

gradient on the error surface into components that each

weight is responsible for [13]. The algorithm starts by

taking the input vector and querying the current network for

an output vector. This output is compared to the desired

output, resulting in an error value. If let y* be the desired

output, and y be the actual output, e = y - y. Usually in

39

this type of algorithm we are interested in the sum squared

error (SSE) which can be represented as / = — |e| .

At this point, backpropagation is used to assess the blame

for the error. This is done by using partial derivatives

along with the chain rule. For example, if our function to

approximate is y(x;p) = f(g(h(x;p))) and we want to find the

contribution of x to J, the equation would be:

dJ_

dx

dJdedydgdh

p
dedydgdhdx

Once the we know how much x contributes to the error, it is

possible to update the weights pertaining to x. The update

rule is:

Ax = -c3 (2.14)
dx

where

a is the learning rate (typically small and positive)

The learning rate is used to prevent large jumps along the

gradient and allow a smooth traversal of the error surface.

Thus backpropagation attempts to follow the gradient by

continually changing the network coefficients according to

how much of the error they caused.

While gradient algorithms are an elegant way to update

parameters, they have their difficulties. One problem is

that they have a highly variable convergence time. In

general, it is difficult if not impossible to determine how

many epochs, or passes through the data set, will be required

40

for the algorithm to converge to a local minimum. When

coupled with the fact that reasonable outputs may not result

until convergence, it is easy to see that this may not be the

algorithm of choice for time intensive applications.

Finally, gradient algorithms have the potential to converge

to sub-optimal solutions corresponding to local- minima which

can be significantly less accurate than the global minimum.

Despite these problems, there has been some success achieved

using gradient descent methods and wavelets (see Section

2.4). However, these methods are not very amenable to the

on-line, variable structure algorithm that I wish to develop.

2.3.2 Least Squares

Least Squares (LS) is a method for solving an

overdetermined system of linear equations such that the L

norm of the error is minimized. "Overdetermined" means that

we have more data than necessary to solve for the

coefficients. Assuming m equations with n unknowns, m > n.

The Least Squares solution is very basic. If we have a

system, Ax = b, we want to minimize [Ax-if [14] . Solving

this for x:

x = {ATA)~lATb (2.15)

where

A is m x n

x is n x 1

b is m x 1

41

The easy method for finding wavelet coefficients in Section

2.1.2 employs Least Squares.

Least Squares has several benefits besides being easy

to compute. Given a system of equations, Least Squares will

provide the optimal solution. It also allows input data to

be weighted according to its reliability. This is done by

simply adding a weight matrix into the above equation [14]:

x = (ATCA)~'ÄrCb (2.16)

where

C is WTW

W is the weighting matrix containing a value for

each error, e = b - Ax

If the errors are independent, W will be a diagonal matrix.

Otherwise it will also contain off-diagonal weights. In the

LS algorithm discussed before W is just the identity matrix.

On the negative side, Least Squares is not particularly

well suited to on-line training. The matrix A is created

using the input data and any new data must be added by

creating a new row. Thus, with a large amount of data, the

matrix gets very large. Another problem is that every time

the matrix A is updated, x must be solved for again when all

that is needed is the change in x with respect to the new

data. These problems are remedied with Recursive Least

Squares.

42

2.3.3 Recursive Least Squares

Recursive Least Squares (RLS) is a way to incrementally-

solve a system using the Least Squares method. This is done

by assuming the first estimate is optimal with respect to the

data seen so far. As more data arrives, an update to the

previous estimate is made to make the solution,optimal for

all the data to that point. The information necessary to

continue updating is saved in a covariance matrix,

eliminating the need to save all previous measurements. This

is akin to computing a running average by just saving the sum

and the number of values so far. The RLS equations are [14]:

if^Pti+AfjpA, (2.17)

x, = xt_x + Kfä-AiX^) with K, = P$V?

where

P = covariance matrix of the input data

V = covariance matrix of the input wnoise" or

uncertainty

A = information matrix

x = coefficient vector

b = observation, or output, vector

2.3.3.1 Weighting Observations in RLS

Like Least Squares, an important ability with RLS is

that observations, or inputs, can be weighted. This is

accomplished via the V matrix in Equation 2.17. Assuming

every observation is independent, the V matrix will look

like:

43

y = '21

"'?
i

and V'1 = ff»

l

•2.

(2.18)

Therefore the V matrix could be considered the amount of

error, or noise, in each input while the V1 matrix is the

weighting that each input will get in the RLS algorithm.

If we take this a little further, we can develop age

weighting. In this case, we want each new input to have more

weight than any of the previous inputs. If we let X,

0 < A, <1, be the discount factor that each previous input

will get relative to the new input we get a V1 matrix like:

\rl =

X

(2.19)

Equation 2.19 tells us that every time a new input is added,

the previous inputs are reduced again by the discount factor.

In an on-line algorithm we don't want to have to deal with

this V matrix so we can rewrite the first equation of

Equation 2.17 to look like this:

44

In this recursive equation, the old covariance matrix of the

input data is discounted by X at every iteration. This is

equivalent to Equation 2.17 using Equation 2.19 and it

provides us with an easy way to perform age weighting on the

input data. As a side note, RLS using data weighting is

still learning the optimal solution. We have just changed

the nature of the solution somewhat. RLS now learns the

optimal solution given a particular weighting scheme.

2.3.3.2 Summary of RLS

RLS successfully eliminates many of the limitations of

LS. The size of the covariance matrix is constant with

respect to the input data in contrast to LS which requires an

extra row for every input. When used with streams of data it

is significantly more efficient since redundant calculations

are avoided; it can solve for just the change in x with

respect to the new data instead of solving the entire

equation again like Least Squares. Both RLS and LS always

give an optimal solution relative to the data they have seen.

In contrast to gradient methods, it gives this solution by

only making one pass through the data, whereas gradient

methods require multiple epochs.

Of course, RLS does have some potential problems as

well. For a large number of unknowns, n, the covariance

matrix, P, can be very large since the size of P is n x n.

Thus in many cases a significant amount of storage space is a

necessity. Additionally, the RLS equations require an

45

inverse of P which can be a large amount of computational

work, especially if P is large. The ramifications of these

factors can be reduced by breaking up the unknowns into

smaller clusters (if independent) and by only calculating x

periodically, reducing the number of inverses taken. These

solutions along with the other positive attributes of RLS

make it a very nice training algorithm for use in an on-line

wavelet basis function network.

2.4 Putting It All Together

Before outlining our algorithm, it might be instructive

to see how others have constructed wavelet networks.

Zahn and Benveniste were working with wavelet neural

networks as early as 1991 [16]. Their work in the area was

successful and their papers have been widely distributed. In

their network, they use continuous wavelets in a multi-layer

network structure trained by a stochastic gradient descent

algorithm. These choices drive the rest of their algorithm.

The choice of continuous wavelets is a simple one.

Since they are not using a structure which requires

orthogonal wavelets (such as multiresolution) they have their

pick of whatever wavelet base best fits their needs. Their

choice of the multilayer network structure is a little more

complicated. It allows the algorithm to be compared to much

of the neural network literature which are also constructed

of the same multilayer structures. Additionally, by using

gradient descent with a nonlinear feedforward network they

46

are basically performing nonlinear regression. This is well

suited for continuous inputs and outputs, performs well with

noisy data, and will find the best fit for its associated

network structure. In fact, Cybenko proves that a multi-

layer network can represent any continuous function, if it

has the correct number of hidden units [3].

The main drawback with this approach, and specifically

with multi-layer networks, is that choosing the number of

hidden units is not an easy problem. Too many units result

in bad generalization due to memorization of the data. Too

few units can cause bad approximation since the network may

not have the representational power needed to accurately

approximate the input function. This is a difficult problem

which is addressed in this thesis through a variable

structure algorithm. Another problem with this structure is

the inability to incorporate a priori knowledge into this

type of algorithm. This is due to the lack of transparency

in the weights. Finally, multilayer networks used with

gradient descent have the potential to converge to sub-

optimal solutions (local minima) when their initial

conditions are not set correctly.

To get around many of these problems, Zahn and Beneviste

used a complicated initialization phase. They used a fixed

structure, but chose the wavelets in this structure by

looking at an initial batch of data. This fixed the dilation

and translation coefficients, leaving only the weights of the

wavelets as adjustable parameters. They used a variety of

47

constraints on these adjustable parameters to try to prevent

convergence to local minima. The algorithm was successful in

that it was able to get the same results with significantly-

fewer wavelets than a strict, fixed wavelet decomposition.

However, the computational complexity of the algorithm was

high, particularly in the initialization stage. Also, there

is no guarantee that the local minima will be avoided. It

does have the ability to incorporate a priori information

into its structure by choosing specific wavelets, but that

structure is still fixed. This fixed structure implies that

it may have problems adapting to new data that fall outside

of the range of the initialization batch.

Bakshi, Koulouris, and Stephanopoulos present an

algorithm that is much closer to what this thesis deals with

[8, 13]. Their network consists of orthonormal wavelets in a

multiresolution structure. They chose the Least Squares

method to train their wavelets. Using a multiresolution

structure they perform variable structure based on the L"

norm. They augment this variable structure by using the

technique of cross-validation, in which the network is tested

on previously unseen data and adjusted accordingly. Pruning

of wavelet basis functions is used in order to increase

generalization.

Overall, Bakshi, Koulouris and Stephanopoulos' algorithm

is along the same lines as what this thesis is exploring with

a few exceptions. Their algorithm is not set up for on-line

learning, limiting its usefulness. This is mainly due to the

48

cross-validation and pruning used, but also because LS isn't

an efficient algorithm for on-line learning. Additionally,

much of their success has come about using non-compactly

supported orthogonal wavelets such as the Battle-Lemarie and

the Mexican Hat wavelet [2]. While these wavelets

approximate well, they tend to be much more inefficient than

compactly supported orthogonal wavelets such as the Haar and

Daubechies wavelets [5]. Finally, their work is almost

completely confined to one dimensional wavelets.

The two variations presented above were successes, but

they leave much to be improved upon. The purpose of this

thesis is to build upon these ideas and create a wavelet

based, fast, efficient, on-line variable structure algorithm

that can be used in a multi-dimensional input space.

49

50

3 A 1-D Wavelet-Based Variable
Structure Learning Algorithm

While the purpose of this thesis is to present an

algorithm for an n-dimensional wavelet-based variable

structure algorithm, this section will deal with a simplified

version of that concept. We will start with a one input, one

output system, and build the design from there. This is a

reasonable approach since the elements used in this version -

will all be applicable to the n-dimensional case.

Section 3.1 will begin with a specific structure taken

from components described in Chapter 2: a multiresolution

structure of Haar wavelets trained by Recursive Least

Squares. Specifics are used to simplify the discussion and

facilitate the description of the algorithm. Section 3.1.4

will discuss changes to make the algorithm more general. In

Section 3.2 we will introduce variable structure elements

into the algorithm, creating a bare bones version of the

algorithm that will be used for the rest of this paper.

Finally, in Section 3.3 enhancements and modifications to the

algorithm will be discussed.

3.1 The Basic Algorithm

Now that we have the background information from Chapter

2, it is finally time to put the components together and

create a simple wavelet network. Figure 3.1 displays how

this network will work.

51

1

I

I

Input Vector

Stage 1:
Find "Hit" Wavelets in

the Network

Stage 2:
Compute Approximation

Error

Stage 3:
Train Wavelets

Target Vector

Figure 3.1 Basic Algorithm Flow Chart

Stage one uses the network organization to determine which

wavelets are "hit" by the input vector (Section 3.1.1). A

wavelet is hit if the input vector falls within its support.

Stage two looks at the hit wavelets and determines what their

52

outputs will be for the given input (Section 3.1.2). This

effectively gives us the network output for the input vector.

We can then compute the error in the approximation. Stage

three takes the network output vector and the approximation

error and trains the wavelets to better represent the input

data (Section 3.1.3).

3.1.1 Stage One: Finding the Hit Wavelets

The goal of this algorithm is to construct the smallest,

network possible while still approximating the input

function. This is done by restricting the choice of wavelets

(Haar in this case) to the bare minimum spatial and frequency

(dilation and translation) dimensions. Even doing this can

still lead to a potentially infinite number of basis

functions as the input gets.larger in space and finer in

frequency. Thus we need some way to organize and keep track

of which wavelets will be used for a given approximation. Our

algorithm relies on wavelet structures (Section 3.1.1.1),

data normalization (Section 3.1.1.2) and multiresolution

(Section 3.1.1.3) for this task. These all take place once,

before the on-line approximation begins. Once an

appropriate wavelet structure is created, it is easy to

determine on-line which wavelets will be hit by a given input

vector (Section 3.1.1.4).

53

3.1.1.1 Wavelet Description

The first step in organizing the wavelet bases is to

provide a way to access and describe the wavelets that will

be used in the approximation. This is done by assuming the

wavelets are independent constructs represented by a general

structure:

Wavelet:

ID Number Location Coefficient

ID Number - An unique numbering used to

identify one wavelet from another

Location - A vector containing the unit's center

Coefficient - The wavelet coefficient

This structure tells us the translation of the wavelet

(location), gives us a way to identify the wavelet, and keeps

the wavelet's training information (in the form of a

coefficient). Dilation information is provided by the

network structure, specifically by what resolution level it

is at.

3.1.1.2 Data Normalization

The first step in culling the available wavelets to a

reasonable number is to limit the translation space. In our

algorithm this is done through normalizing the input data.

Input data are assumed to be normalized in the range of 0 and

1 before they are passed to the algorithm. By separating the

54

normalization from the algorithm we save the algorithm from

storing any of the data, or information about the data. This

frees the algorithm to be used for true on-line

approximations. Section 5.1.1 discusses the steps necessary

to normalize data for a real application.

Normalization significantly reduces the number of

wavelets needed to produce an approximation. First, we know

the maximum size wavelet available for use. That wavelet is

the one which completely spans the input domain (in our case,

between 0 and 1) . This makes sense because we know that

there will be no data outside of that range due to

normalization. Subsection 3.1.1.2.1 goes further into this

topic.

This type of normalization is not the only solution to

the problem of limiting the extent and the number of

wavelets. Another method could be to have variable

boundaries according to the data seen so far. As new data is

introduced which is outside the current range, the boundaries

are extended, increasing the number of viable wavelets that

can be trained. This is an aspect of variable structure that

we chose not to pursue since data normalization was an easy

solution. There are other solutions, but for our purposes,

the simple type presented above suffices.

3.1.1.2.1 Truncating Wavelets

If we use data normalization we must enforce strict

boundaries around the input domain. If a wavelet extends

55

outside of these boundaries, only the portion of the wavelet

within the input domain will be hit by the data. This

effectively changes the shape of the wavelet (see Figure

3.2). This new shape will not be in the orthogonal wavelet

basis and thus must be discarded.

1.5

0.5

-0.5

-1.5

■0.5 0.5

1.5

0.5

-0.5

-1.5

0.2 0.4 0.6 0.8

Figure 3.2 A Wavelet Which Extends Past the Normalized
Range and its Resulting Shape

It seems prudent to provide a short illustration of why

a cutoff wavelet will no longer be orthogonal to the basis.

The primary reason for this is because an orthogonal basis

assumes that every wavelet used in the basis will be hit by

regularly spaced, dense data [10]. Although this is only in

the perfect case, a cut off wavelet will never have data hit

56

the portion that extends beyond the normalized range. This

means that we can't even approximate regularly spaced, dense

data and thus it can only be orthogonal by chance. We can

construct a shorter example by looking at Figure 3.3. The

top function is the truncated wavelet from Figure 3.2. The

function on the bottom is the Haar scaling function.

Tiuncated Haar Wavelet - Not in Orthogonal Basis

Soi

-2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scaling Function of the Orthogonal Basis

«o

-1

-I -I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

Figure 3.3 Truncated Wavelet Shown with Scaling Function

Equation 2.5 told us that the integral of the product of two

orthogonal wavelets must be zero. Taking the integral of the

functions in Figure 3.3:

57

J/oo*(*)=j/wsoo+l2f(x)8ix)+Lfix)8(x) * °

By using this same principle, we can reduce the number of

viable wavelets for the approximation to only those which fit

within the input domain.

3.1.1.3 Multiresolution

Normalization tells us if a wavelet is viable, but it

does not tell us exactly what wavelets will be necessary.

Multiresolution provides us with a hierarchical design that

determines where each wavelet will go and what its dilation

will be. In our algorithm this process is very simple. The

largest wavelet available along with the associated scaling

function for the orthonormal basis (reference Section 2.2)

are considered to be resolution level one. This wavelet and

scaling function will span the input domain. The dilation of

level one is set to the value one. On top of this, we are

able to construct finer and finer grids of wavelets which

tell us the smaller translation steps and the higher dilation

levels (i.e. higher frequency) of every wavelet necessary for

the approximation.

58

7 «XX xxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxx xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

.2 4

DC

XXX xxxxxxxxxxxxx

-I *-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Location

Figure 3.3 Location Grid for Resolution Levels 1-7

At each successive resolution in the grid, we get these

relationships:

Frequency (dilation): 2x the next lower Frequency

Spatial (translation): distance apart is reduced by 1/2
from next lower resolution

This allows us to determine how many wavelets are on a

particular level (since the range is normalized to 1) and

what their locations (translation coefficients) are. If we

know what resolution level we want to stop approximating at

(Figure 3.3 assumes level 7) we know exactly how many

wavelets will potentially be necessary, as well as the

translation and dilation coefficients for them all.

59

3.1.1.4 Findina Wavelet Hits for Compactly Supported Wavelets

This is the part of stage one that takes place on-line.

Luckily, determining which wavelets should be trained is

really the easy part. This is especially true for wavelets

which do not overlap, such as the Haar wavelet. The

multiresolution grid structure that we built above basically

tiles the space with these wavelets. As seen in Figure 3.4,

each wavelet has a specific location range, or support, that

it is responsible for. A wavelet will only be trained if the

input falls within its range, making this step completely

input driven. Since the ranges do not overlap, only one

wavelet will be chosen for each of the resolution levels.

This indicates that for each input, only n wavelet units will

be trained, with n equal to the maximum resolution number.

The equation for determining which wavelet in a given

resolution level has been hit is:

™»=\nP%melet range] <3-1»

where

T 1 is the ceiling function

num is an integer referring to the position of the

wavelet within the given resolution level

wavelet range is a value determined by the size of

the wavelet at the given resolution level

60

5rX X X X < X l> XXXXXXXXXXX

0.5
Location

Figure 3.4 Wavelets With Input = .3 Within Their Range

As whit" wavelets are found they are kept by their

identification number to be updated later. Once a wavelet

has been found for every resolution level, stage two can

begin.

3.1.2 Stage Two: Compute Network Output and

Approximation Error

At this stage we assume that we have identified the hit

wavelets and scaling functions. Now we must determine what

values the wavelets give us for this input vector (the

61

network approximation) and how that compares to the expected

output (the approximation error). The equation to determine

the network approximation is:

y(x) = qT(x)c = £a,(*)c< (3.2)
i

where

y is the network approximation

a.(x) is the wavelet evaluated at the inputs

c is the wavelet coefficients

The network output is the sum of the wavelet basis functions

evaluated at the input vector. The wavelet coefficient is

taken from the wavelet structure. The value sk(x) is a

function of the location of the wavelet and the network

input. Figure 3.5 shows a. (x.) being computed on two Haar

wavelets. Wavelet 1 gives a value of -1 for a. at the input

while Wavelet 2 gives a value of 1.

Once we have the network's output for the given input

the only thing left for this stage to complete is to

determine the approximation error. This is simply the

squared error between the actual and expected outputs :

(expected output - actual output)2 (3.3)

This value is then passed on to the next stage to aid in

training the wavelet units.

62

1°

_l I 1 L.

Wavelet 2 evaluates to 1

0 0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 , 1
Input Location

1°
■1

-2

Wavelet 1 evaluates to -1

_l | i i L.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Location

Figure 3.5 Evaluating Two Wavelets in the Grid at Input= .6

3.1.3 Stage Three: Train Wavelets

Training is accomplished in an on-line manner. This

allows the algorithm to be used by a much wider selection of

problems since on-line training can be simulated by using a

batch if necessary. It is also the most suitable method for

our applications of interest since we will be looking at on-

line dynamical systems where the full scope of the data

encountered is not known. Variable structure is a boon for

this situation since it can learn and change structure on-

line.

63

Training is used to make the wavelet coefficients better

represent the data. It uses the A values and the error

generated from stage two to determine which wavelets need

adjusting and by how much. Then new coefficients can be

created from this and the wavelets updated.

3.1.3.1 Training Wavelets

To train the coefficients of the wavelets that have been

hit by the input vector we use Recursive Least Squares (RLS).

For the basic algorithm we will perform RLS on every "hit"

wavelet simultaneously (in Section 3.3.3 we will see that

this is not always necessary).

RLS is performed by keeping global covariance matrices

for the input data and the input uncertainty. Encoded in

these is all that is necessary to perform incremental

coefficient updates (Section 2.3.3 goes more in depth on this

subject). The matrices are updated through the use of an

information matrix, or A matrix. This matrix is formed by

using the A values determined in stage two along with zeros

for every wavelet which was not "hit" by the input vector.

Any wavelet with a zero in this matrix will not be updated.

With the two covariance matrices, the A matrix and the

expected output vector, RLS computes the new coefficient for

each wavelet. Each coefficient is assured to be the optimal

Least-Squares solution so far (see Section 2.3.3). This

coefficient replaces the old coefficient in each of the

64

wavelet structures, ending stage three. This process is

repeated until the stream of input vectors is stopped.

Target Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.I
Approximated Function

0.9 1

■5 k xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxxxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
*6
_J

«4
3

«2
a.

*xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

X X X XX X X X
xxxx

X X

X

1 1 1 ' 1 1 1 1 1 : 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input Space

Figure 3.6 Haar Wavelet Approximation a Function

The example presented in Figure 3.6 shows the

approximation ability of the basic algorithm. The Haar

wavelet was employed and the resolution level was set to 7,

giving us 127 wavelet basis units. The data stream consisted

65

of 3000 random vectors from the input function. The network

output nicely captures all of the features of the input

function. For comparison, Figure 3.7 shows the same target

function approximated using the Mexican Hat wavelet with the

basic algorithm. At resolution level 7, it also captures all

of the features of the input function.

Target Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Approximated Function

*6
_i
c
.24
o
»2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Unit Locations

8r
< xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxxxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
*xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx

X XX X X X X X
X X X X

X X
X

J I I I I I 1 1 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.7 Mexican Hat Approximation of a Function

66

3.1.4 Generalizing the Basic Algorithm

In Sections 3.1.1 through 3.1.3 we presented an

algorithm in very basic terms and overlooked a few problems

in lieu of a more understandable algorithm. To make the

algorithm more general we need to look at the problem of

overlapping wavelets and how the scaling function fits into

the complete algorithm.

3.1.4.1 Modifications Neciessarv for Overlapping Wavelets

The use of non-compactly supported wavelets complicates

things somewhat. However, this complication only manifests

itself in stage one, specifically when we are determining

which wavelets are "hit" for an input vector.

Each type of overlapping wavelet has a specific

overlapping range. In our multiresolution structure, this

value can be represented in terms of how many adjoining

wavelets it overlaps into. This number is independent of

resolution because the ratio of wavelet size to wavelet space

remains the same in our structure. Thus if the overlap value

is 2, each wavelet will potentially overlap two wavelets on

each side (by convention). We say potentially because the

normalization boundaries still stand. Only those wavelets

that exist within these boundaries can be overlapped upon.

Since overlapping wavelets can extend indefinitely, we need

to relax our previous restrictions somewhat. Now, the

largest wavelet allowed will be chosen so only a small part

67

of the function (preferably just the tails) will extend

beyond the normalized range. By nature of the location grid,

the wavelets above the first will have even less of their

functions truncated. The truncated amount will cause a small

degradation in the approximation ability, but it will be

trivial. Figure 3.8 shows the wavelet hits using overlapping

wavelets on the same input as in Figure 3.4.

4.5

3.5

1 3

| 2.5

8
DC 2<

1.5

1<l-

a a <J-BT> a a

® -m-

-8-

»

0.5

0.1 0.2 0.3 0.4 0.5
Location

0.6 0.7 0.8 0.0

Figure 3.8 Wavelets Hit With Input = .3 and Overlap = 2

Using the overlap value we can find the hits on

overlapping wavelets by using Equation 3.1. For each

resolution level this will give us the center unit for the

input (represented by the squares on Figure 3.8). From this

68

value we simply include the number of wavelets on each side

of the center unit equal to the overlap value (represented by

the circled units on Figure 3.8). Thus with n resolution

levels the number of wavelet hits will be:

n < # of wavelets hit < n * (overlap + 1) (3.4)

As in Section 3.1.2.2, as the "hit" wavelets are found, they

are stored by their identification number to be updated

later.

3.1.4.2 Updating the Scaling Coefficient

The scaling function is a special case of a wavelet

function, determined by the orthonormal basis chosen (see

Section 2.2). Typically, the scaling function is the first

thing to be trained and updated since it provides the bias

for the approximation.

The same process is used to train the scaling function

as we use to train the wavelets. However, the process is

quite a bit easier. Since it spans the entire normalized

space, it is hit with every input. Additionally, there is

only one scaling function, simplifying RLS training in the

sense that the P, V, and A matrices are all single values

(reference Equation 2.17).

Knowing the above information, stage one is unnecessary.

Stage two is completed with the equations:

y(z) = c • a(2£) (3.5)

e = (y(&) - y(£))2 (3-6)

69

where

y(3c) is the scaling approximation

y (x.) is the target vector

e is the scaling error

c is the scaling coefficient

a (x) is the value given by evaluating the scaling

function at the input vector

Stage three is completed in the same manner as with the

wavelets: the scaling coefficient is determined using the A,

P, and V values along with the scaling error.

At this point, something different occurs. Each unit,

whether it be a scaling unit or a wavelet unit, takes up a

certain portion of the approximation error (we update the

units to reduce this error). Since we update the scaling

function first and independently of the wavelets (which we

can do because of the orthonormal basis), the new error that

the wavelets train on is just the scaling error:

e' = y (x) - C- a(2c) (3.7)

where

e' is the new error

c' is the new scaling coefficient

This is basically saying that the approximation error for

that input is reduced by what the scaling unit is now

70

evaluated at. The rest of the error which the scaling

function cannot absorb must now be taken care of by the

wavelets. The scaling function is put into the final

algorithm in Section 3.1.5.

3.1.5 Summary of the Basic Algorithm ,

The basic algorithm is performed one input at a time.

For compactly supported wavelets, the algorithm looks like:

• p, v <— wavelet covariance matrices

For some input—

• update the scaling function using RLS

• update the wavelet functions using RLS:

• A <- empty vector of size = total number of
wavelets

• for every resolution level—
• num <- Tinput / wavelet_support(i)l

• ID <- get_wave_ID(num, i)
• A(ID) <- find_Avalue(input, ID)

• P,V, coefficients «- perform_RLS(A, P,
V)

• wavelets <- new coefficients

Non-compactly supported wavelets require the overlapping

wavelets to also be trained.

71

3.2 Simple Variable Structure

In Section 3.1 we built an algorithm for approximating a

function in an on-line manner using a set of known wavelet

basis functions. The goal of this section is to take the

previous algorithm and modify it to allow wavelets to be

added only when they are needed for the approximation. This

algorithm will be the basis for the rest of this thesis. To

describe the modifications necessary for variable structure

we will rely upon the flow chart in Figure 3.1.

In stage one we add more information to be kept by each

wavelet. The algorithm for finding "hit" wavelets is also

modified to work for unlimited resolution levels and non-

existent wavelets (see Section 3.2.1). The additions to

stage two deal with computing the new metrics of wavelet hits

and local error for each "hit" wavelet (see Section 3.2.2).

Finally, stage three's implementation of RLS must be modified

to work with a variable number of wavelets and a structure

must be created to use the information from stage two to

decide when to add new wavelets. New wavelets will be added

according to the number of hits and their local error

(Section 3.2.3).

3.2.1 Modifications to Stage One

Stage one is really independent of the choice of

variable structure. We will still use data normalization and

multiresolution, including the location grid shown in Figure

72

3.3. The only difference is that while the locations of

every possible wavelet are known, the wavelets are no longer

guaranteed to be there (i.e. they have not been added to the

basis). Additionally, some extra information must be kept

for each wavelet.

3.2.1.1 The New Wavelet Description

There are some new statistics that will be required for

each wavelet in this implementation. In order to conduct

variable structure we will need to now keep track of the

number of data hits and the local approximation error for

each wavelet.

Wavelet:

ID Number Location Coefficient Hits Error

3.2.1.2 Determining Wavelet Data Hits

In the basic algorithm presented in Section 3.1,- we knew

the number of resolution levels and that there would be a

wavelet in every resolution that would be hit by the data.

This is no longer the case in a variable structure situation.

Now, there is no limit on the number of resolution levels and

there is no guarantee that even if a level exists, that there

will be a wavelet which has the input vector within its

range.

73

The solution to these problems is quite easy. First, we

make a rule stating that every new wavelet must be placed in

the grid and above another existing wavelet (see Figure 3.9).

Figure 3.9 Variable Structure Grid Showing Wavelets With

Input = .3 in Their Ranges

This sounds restrictive, but it is reasonable. In 3.2.1.1 we

saw that we now need to keep statistics on wavelets in order

to determine which new wavelets will be added. Every wavelet

keeps statistics for the wavelets above it in the next

resolution level. This implies that to even consider adding

74

a new wavelet, the wavelet in the resolution level below it

must already be in the basis. We are restricting the power

of the representation, but it is necessary if we are going to

have the information to determine which wavelets should be

added to the basis.

With this new rule, determining which wavelets should be

trained on the input data is easy.

• Resolution <— 1

• repeat until wavelet does not exist

• wavelet = .["input / wavelet_range(Resolution)!

• IF wavelet exists

• store ID to train later

• resolution += 1

The above pseudo-code relies on a simple rule. A resolution

level which does not have a wavelet hit by the input data,

implies that there will no more wavelets since they would

have to be built above the nonexistent wavelet. This makes

determining, which wavelets should be trained on a given input

as fast as in the basic algorithm in Section 3.1.

3.2.2 Modifications to Stage Two

Previously in stage two, we computed the network output

and the approximation error. Now we must also update the hit

and error statistics for the highest resolution wavelet with

the input data within its range. We only keep statistics for

the highest resolution wavelet because it is the only given

75

wavelet which does not have any wavelets above it (see Figure

3.9). Therefore it is the only wavelet which needs to keep

statistics.

Each wavelet must keep statistics for every new wavelet

in the next resolution that can be added above it. Using one

dimensional input data, this implies that each.wavelet must

keep statistics for two potential wavelets above it..

The first thing that must be updated is the hits for

that particular wavelet.

• IF hits < min_hits

• hits <— hits + 1

The variable min_hits is the number of hits that are

necessary for the wavelet in the next resolution to be added.

By requiring a certain number of hits (i.e. 5 hits) we ensure

that the errors have had time to stabilize and that we are

not adding a new wavelet because of a single spurious input.

We can use the updated hits to update two types of error

for each wavelet. The first error is the local average

error, or the local L2 error.

avg_error = avg_error + (1 / hits) *

(approximation error - avg_error)3 (3.8)

where

approximation error is the result of Equation 3.3.

RLS reduces the global average training error so it is

necessary to keep the local average error for each wavelet.

76

This allows us to find the individual wavelets which have

large errors. However, it isn't the only error we need to be

concerned with.

The second type of error we need to compute is the local

maximum error (this is similar to the L°° error) . It keeps

track of the maximum error experienced by that wavelet so

far. The maximum error is used to prevent large error spikes

in the approximation, since it is possible for the average

error to be low while still having some large errors mixed

in. Depending on the application, a new unit might be

necessary to bring these large errors down.

3.2.3 Modifications to Stage Three

To accommodate variable structure, the first change

needs to be an update to the training algorithm. In Section

3.1 there were a fixed number of units, resulting in a known

size for the covariance matrices used by RLS (specifically n

x n with n being the number of units) . In our variable

structure architecture, n increases; implying that our

covariance matrices in RLS must also grow. The properties of

RLS make this easy. To expand the inverse covariance matrix

(p-i _ reference Equation 2.17), a row and column is simply

concatenated. Thus to add a unit to an m x m inverse

covariance matrix, we simply increase the size of the matrix

to (m +1) x (m + 1), filling the newly created space with

zeros. This row/column number now correspond to the new

77

wavelet and a mapping between them should be kept in order to

update coefficients from the RLS algorithm.

This stage is where variable structure actually takes

place. With the updated information from stage two, stage

three can train, update, and possibly add new wavelets. The

initial network has one unit and a scaling function at

resolution level one. As inputs are used and the statistics

are updated by stage two, units are slowly added to the basis

to improve the approximation of the output function.

The decision to add a new unit is based upon three

inequalities:

hits >= min_hits AND

(avg_error > avg_error_thresh OR

max_error > max_error_thresh)

If this boolean expression is true, the wavelet in the next

resolution corresponding to the input data will be added.

This means that the topmost wavelet has been hit enough times

to give good error information and that at least one of the

local approximation errors for that wavelet are larger than

the thresholds set by the user for these errors. These

thresholds are set according to how much accuracy is required

in the approximation. The higher the accuracy, the greater

the number of units and time to convergence will be.

After the decision to add a new wavelet has been made,

the algorithm repeats. Since wavelets can only be added to

the next highest resolution level and only one wavelet will

78

be hit per level, the maximum number of wavelets added per

iteration is one.

3.2.4 Variable Structure Results

One of the most important qualities of a variable

structure algorithm is that it only adds the units necessary

to approximate the given function. This means that assuming

that the function is stationary, at some point the network

must reach an equilibrium point where it has enough units to

approximate the function. Our algorithm stops adding units

once the local errors of all the topmost wavelets are below

the given thresholds. Since all of the local errors are

below the thresholds, it is easy to see that the global

errors must also be below.

Figure 3.10 shows an approximation of an input function

using the Haar wavelet and the variable structure algorithm

presented in this section. By comparing the locations and

frequency of the data (third graph from top) with the input

function it is clear that the algorithm uses more wavelets in

the high frequency areas of the function and significantly

fewer in the low frequency sections. This results in a

significant savings of wavelets over the algorithm presented

in Section 3.1 (68 vs. 127 wavelets). The wavelet units

used are located such that all of the features of the input

function are still captured (reference Figure 3.6).

79

Target Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Approximated Function

Unit Locations
7 «XXX XXX XXX XX XX XXX XX XXX X

6 ■X X X X X X X X XXXXXX XXX X

IE 5 - M K K

■B
S3

DC

X X X X X X X

X X X X

2

1c

K M

__i

I 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o.g 1

GOO 1000 1600 2000
Number of Input Vectors

2500 3000

Figure 3.10 Haar Approximation Using Variable Structure

80

Target Function

' 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Approximated Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Unit Locations
l|l |IM mill| HIIIV I>M» |MMII I

6

I5
■^4

=S

äz

V

I X XXXXXXXXXXXXXXXXXX

XX XKKKKXKKK

X X X X X X

XX X

X X

X
*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

600 1000 1600 2000
Number of Input Vectors

2600 3000

Figure 3.11 Mexican Hat Approximation w/ Variable Structure

81

Additionally the variable structure algorithm is faster,

taking 28.0 seconds to complete while the basic algorithm

needed 33.8 seconds. The lowest graph shows the number of

wavelets used as a function of number of inputs. It is clear

that the addition of wavelets begins to slow around input

1000 and stops altogether near input 1700. At this point the

network stops growing. Figure 3.11 shows the same function

being approximated using the Mexican Hat wavelet. It

requires 79 wavelets to approximate the target function using

the same thresholds as in Figures 3.6, 3.7, and 3.10. The

resulting function displays the smoothness associated with

smooth wavelet approximations. However, the Mexican Hat

approximation took significantly more time than the Haar

wavelet. The variable structure algorithm took 292.7 seconds

versus 340.1 seconds for the basic algorithm. These values

are over 10 times larger than the corresponding times for the

Haar approximations, with no significant increase in

accuracy. Clearly, the Haar wavelet is much more useful in

this type of structure.

In this section, we have put together a simple variable

structure algorithm which rivals the basic algorithm of

Section 3.1. The additional complexity of the implementation

is balanced by the large reduction in wavelets and the

computations associated with them. Section 3.3 explores

additional enhancements that can be made to this algorithm.

82

3.3 Algorithm Enhancements

3.3.1 Frequency Data

Frequency data is without a doubt the most necessary

enhancement to the no-frills variable structure algorithm

presented in Section 3.2. When used as part of the criteria

for the addition of new wavelets, it prevents the algorithm

from overfitting the data, enhancing generalization.

The idea behind frequency data is that the size of a

wavelet basis unit should be dependent upon the frequency of

the data. Any attempt to use wavelets of higher frequencies

than are present in the data will result in basis functions

which are unfounded and that can't be properly trained. This

is best displayed in the case of the Haar wavelet of Figure

3.12. If wavelet one were to be trained on just the data

shown, it may make a very good fit using the left half of the

wavelet, but the right half has no information to constrain

the approximation. Obviously the wavelet is not the proper

size to approximate the data. Wavelet two is a much better

choice since both sections of it are constrained by data.

In the case of regularly spaced, one dimensional data,

the size of the smallest allowable Haar wavelet is easy to

determine:

rain wavelet width = 2 ■ d (3.8)

where

d is the distance between neighboring wavelets

83

-2

-3

Wavelet 1 is not constrained by data

-I X X

Wavelet 2 is a better choice tor given data

XX x x •■-

1
1
i

X = data point

■ i ■ ■ i i i 1 1 1

o -J

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Input Data Locations

Figure 3.12 Wavelet Constrained by Data

This makes sense because each Haar wavelet will need at least

two data points (one on each side) to constrain it (see

Figure 3.13). However, our algorithm does not assume

regularly spaced data. Luckily, due to our multiresolution

structure there is a way to do the same sort of analysis

locally.

For one dimensional input, there will be two "bins" that

must be filled with data before each wavelet can be added.

These bins allow us to keep track of the local data frequency

for each wavelet. Multiresolution tells us that for every

wavelet used in the one dimensional approximation, there are

84

2

1.5

2d

1

0.5 .

0

-0.5

-1

-1.5

.0

d
X

-X = data point

> 1 1 1 1 -.1 L i

0.1 0.2 0.3 0.4 0.5 0.6
Input Data Locations

0.7 0.8 0.9

Figure 3.13 Graphical Depiction of Equation 3.8

potentially two wavelets above it in the next resolution. We

can use this fact to store the data for the two potential

"daughter" wavelets in the current wavelet. This means that

in a one dimensional network, each wavelet must keep track of

four bins total for the two potential "daughter" wavelets

above it (see Figure 3.14).

The requirements for filling the frequency bins can

vary. In cases when you wish the network to grow at the

fastest possible rate, one data point in each bin will be

adequate to constrain the wavelet basis functions (2 data

points per new wavelet). In other applications, several

85

points per bin may be more useful. Our algorithm uses a

binary number for frequency with each bin getting one digit

(only one data point per bin is necessary). This allows fast

retrieval of frequency information by just looking at

individual bits and is efficient in the sense that only one

variable is used for all of the frequency information.

i
CM

c
O

I 0 o •>
V

CO

Bin1 Bin 2
_i

Bin 3 Bin 4

0.1 0.2 0.3 0.4 0.S 0.6
Input Location

0.7 0.8 0.9

8
cc

-1

-2

■
i
1
1
1

Bin 1 Bin 2
i i ' i i

Bin 3 Bin 4
■ i ' i —i j

0.1 0.2 0.3 0.4 0.5 0.6
Input Location

0.7 0.8 0.9

Figure 3.14 The Four Data Frequency Bins for 1-D Data

The approximation of the sparse data (data points

represented as X's) in Figure 3.15 illustrate why data

frequency is an important criterion for the addition of new

wavelets. Instead of just fitting wavelets to the data as in

the middle graph, the frequency data only allows wavelets to

be placed which are constrained by the input data. Thus in

86

the third graph we don't see the dramatic spikes at locations

.06, .33, and .68. There is a trade off for this better

generalization. There are many instances on the graphs were

the approximation using frequency data does not approximate

the individual points as well. This represents the classic

Input Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.8

0.6

0.4

0.2

0

-0.2.

Approximated Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Approximated Function Ualno Frequency Date

Figure 3.15 Approximation With and Without Frequency Data

87

trade off between generalization and memorization. In most

cases the approximation using data frequency will be more

desirable since it is much closer to the "spirit" of the

input function.

3.3.2 Inactive Wavelets

The variable structure algorithm outlined in Section 3.2

is somewhat rigid in its implementation. Particularly, the

addition of new wavelets is a little too constrained. New

wavelets can only be added at the next resolution level, and

only above an existing wavelet. What if we have a

concentration of data that is at a higher resolution than the

wavelets that can currently be added?

10
Data Distribution

+• + ++ -+++ 4- ++ 4- 4--H- +IIIIII III +-H-

J Res1

Res 3

Inactive Wavelet ;
■' Res 2

0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9
Input Location

Figure 3.16 Data Distribution Warrants Inactive Wavelet

•88

Approximation error will drop significantly if we are

able to bend the rules somewhat and add that small wavelet

that the data calls for. In the case of Figure 3.16 the

wavelet at resolution level two cannot be added because there

is no data present corresponding to its right half (see

Section 3.3.1). The wavelet at resolution three, however,

has more than enough data present to be added if it is needed

by the approximation. Inactive wavelets provide the framework

within the variable structure algorithm to allow us to "skip"

resolution levels and add higher frequency wavelets to the

structure. This in no way changes the viability of the

approximation. The orthonormal wavelet basis allows us to

use any and all of the wavelets for an approximation. The

restriction that wavelets have to be added onto other

wavelets is simply to allow us to keep statistics on the

error, data frequency, and wavelet hits.

To preserve this system of keeping statistics in the

wavelets themselves, place-holder wavelets are added to the

structure to hold the position and record statistics. Since

these place-holders will not be trained on (since the

statistics did not deem them fit to be a real basis unit), we

dub them inactive units. These units serve the purpose of

being a records keeper so that other wavelets can be added

above them. The algorithm for determining if an inactive

wavelet should be added is:

89

• for each side of the current wavelet (2 sides in a 1-D

wavelet)

• check wavelet hits >= necessary

• check wavelet error >= max allowable error

• check frequency bins (see Section 3.3.1)

• IF only one of the bins is full THEN

• Add inactive wavelet

The basic premise of this algorithm is that we are

checking to see if only data frequency is stopping a new

higher frequency wavelet from being added. We know that the

wavelet has been hit by data a significant number'of times

and that it has been unable to absorb all the error. What we

are looking for is if there is a possibility that the next

wavelet will never be added because data won't show up in a

portion of its range. Notice that we don't automatically add

the higher resolution wavelet along with the inactive

wavelet. This is because we do not have enough frequency

information on the wavelet. We know that it is getting data

in its range, but we don't know if both sides of it are

getting hit. Therefore we add the inactive to record this

information and add the higher resolution wavelet only if it

fits all of the requirements. Figure 3.17 shows that there

is a significant difference between an approximation with and

without inactive wavelets. Figure 3.18 graphs the Haar

wavelet units used. The empty circle is the inactive wavelet

90

placed by the network and the circled units are those that

the inactive wavelet allowed. Without the use of inactive

wavelets, these wavelets would not be added to the network,

giving us the approximation in the middle graph of Figure

3.17. The inactive wavelet allows us to approximate 12.5%

more of the input function.

Overall, inactive wavelets are a very useful enhancement

to the basic algorithm. They allow the addition of higher

frequency wavelets when they are needed, instead of waiting

for the entire hierarchy of wavelets to make it up to that

level (if they ever do) . The only problem is that there is

extra overhead required to manage the inactive wavelets and

to continue checking to see if they can ever become active

(after some more data has been input they may now fulfill the

addition requirements). However, this overhead is only

necessary once the inactive wavelets have actually been

added. No overhead is necessary unless the approximation

really needs the higher frequency wavelets.

3.3.3 De-coupled RLS Training

The algorithms presented so far use a simple form of RLS

training. For every input a vector is created holding every

wavelet's value for that input (a wavelet that is not hit by.

the data simply has a value of zero). This is then used by

RLS to compute the new wavelet coefficients. The problem

with this approach is that the covariance matrices used by

91

O.Ä 0.3 o.<* O.C O.O O.T o.» o.o

Input Function w/ Data Gap

Variable Structure Approximation w/o Inactive Wavelets

Variable Structure Approximation w/ Inactive Wavelets

Figure 3.17 Demonstration of Inactive Wavelets

92

c

o
8
er

3 -

-9 1 1 r

Circled Wavelets Allowed Due to Inactive Wavelet

8 ® 8 X XX XX-

X X X X X 0 9 X X X X

Inactive Wavelet

j i_ j L.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Wavelet Locations

Figure 3.18 Wavelet Unit Locations for Figure 3.15

RLS are n x n with n being the total number of wavelets in

the network. These matrices have the potential to get

unwieldy and very inefficient since RLS must invert them. To

get around this, we need to exploit the orthogonal

characteristics of the wavelets.

The purpose of the RLS covariance matrices are to keep

track of the interactions between the wavelets. Since we are

using Haar wavelets, we know that the wavelets are orthogonal

93

in the limit as the number of input vectors approaches

infinity. Thus the outputs of different wavelets are

uncorrelated assuming a large amount of well-distributed

data. This essentially means that we can perform RLS on each

hit wavelet individually and still get a similar result as if

we performed RLS on them all at once. The speed and

efficiency we gain by doing this is significant since now the

covariance matrices only need to be 2 x 2 (each wavelet keeps

its own covariance as opposed to one big global covariance

matrix). In terms of space, this means that we need to keep

n 2x2 matrices versus 1 n x n matrix, or n versus n2 terms.

Each wavelet can keep its own covariance value, freeing up

the space that the large covariance matrices filled.

Computationally, de-coupling is also much more efficient

since RLS needs to invert the covariance matrices, which is

computationally intensive for large matrices. Figure 3.19

compares an approximation performing RLS training on all the

units at once versus only performing RLS on individual units.

The de-coupled algorithm had a sum squared error 6.8% larger

than the full RLS algorithm. This is due to the wavelets not

being 100% orthogonal (the data was not dense and regularly

spaced). However, the de-coupled algorithm finished in 31.02

seconds compared to 67.97 seconds, resulting in a 54% time

gain. In most cases this time savings outweighs the small

increase in error.

94

... Target Function

-FulIRLS- SSE = .9013

■- De-coupled RLS - SSE =

JIHUl ! ! I -. LA ' *■ :

-1_S j L

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 3.19 Approximation Using Full and De-Coupled RLS

Training

The case of non-compactly supported orthogonal wavelets,

changes this somewhat. Since the wavelets are still

orthogonal, there is covariance between two wavelets at

difference resolution levels is still zero. However, non-

compactly supported wavelets do interact with each other at

95

the same resolution level (by overlapping). Thus instead of

using RLS to train the units individually, it must train on

the subset of wavelets at each resolution level that are hit

by the input. This gives us n m x m matrices with m = 2 •

overlap + 1. In this case, we save space if m2 < n since we

have n m x m matrices as opposed to 1 n x n.

Computationally, there is a good chance that de-coupling will

be more efficient, even for large m since smaller matrices

are much easier to invert than larger ones.

3.3.4 Pruning

In the context of the algorithm presented here, pruning

refers to the process of finding unnecessary or even

deleterious bases in the current structure and eliminating

them. It is a relevant topic in any type of approximation

where noise or overfitting of the data can be a factor. In

the case of a variable structure network employing orthogonal

wavelet bases it is very useful since the removal of any of

the bases will not affect the others.

There are two problems that pruning can help with: noisy

data and overfitting when dealing with areas of the

approximation for which there is insufficient data. Noisy

data is usually attributed to small, random errors in that

data that are often assumed beforehand. It makes it

difficult to achieve an accurate approximation because the

data itself is not completely accurate. For example, this

type of noise can cause small spikes in the network output

96

due to the wavering nature of the input data. Since the

learning algorithm cannot distinguish noisy data from

accurate data, these spikes will sometimes be represented

using high frequency wavelets. Pruning is very effective in

this case because the wavelets tend to be small and

conspicuous.

Overfitting in the approximation is usually caused by

too little data being used for too much training. In areas

where data is scarce, it is often difficult to develop

accurate bases. This can cause the algorithm to employ too

many wavelet bases without enough data to support them. In

our algorithm, this type of error is combated through the use

of stored data frequency information and accessed when the

addition of new wavelets is necessary. Section 3.3.1

discusses this in more detail. Approximation error can also

be due to artifacts left by the bases used in the

approximation. An example of this is the square edges of the

Haar wavelet left in an approximation of a smooth function.

Pruning tends to not be very effective in eliminating this

problem.

One benefit of pruning is that there is usually a

significant drop in the number of bases necessary to

approximate the same function. In an application where space

or time to evaluate the bases is limited, pruning can be very

helpful. Of course there is always a sacrifice. Although

pruning attempts to only remove useless parts of the

approximation, it is unlikely that it will do this without

97

affecting some of the genuine features of the approximated

function. However, this tends to give a smoothed, more

generalized representation which is desirable in some

applications.

Two common ways of implementing pruning are

particularly well suited to a wavelet-based variable

structure algorithm: cross validation and thresholding

methods. Cross validation attempts to estimate how well the

current approximation will fare on unseen data [13]. It is

used to determine if the network is general enough to handle

any arbitrary data, or if it has simply memorized the input

data. It works by not training the network on some fraction

of the known input data. This data is set aside and then

used at the end of a training cycle to test the prediction

performance of the network on unknown data. It is used to

prune units by being performed repeatedly on smaller and

smaller incarnations of the same networks, until the best

prediction performance is found. Bakshi, Koulouris and

Stephanopoulos rely heavily upon this technique in their

wavelet network to reduce overfitting and provide

generalization [1].

Thresholding methods are used to prune units according

to their influence on the approximation as a whole. They

basically assume that in any approximation there will be some

unimportant details that can be considered to be noise [11].

In terms of our algorithm, this would be decided based on the

wavelet coefficients, with the smaller coefficients

98

considered less influential than the other wavelets. There

are many types of thresholding. The two simplest forms are

hard and soft thresholding.

Hard thresholding is used when you are looking to

reduce the number of units to the minimum necessary. It

analyzes the coefficients of every unit and if they fall

below a certain magnitude, they are eliminated. Soft

thresholding on the other hand, shrinks all coefficients

towards the origin [11]. As this happens, the units with

smaller coefficients tend to disappear. It is useful for a

mild form of smoothing.

Thresholding in general is much faster than cross

validation since it can be done in one pass. Additionally,

no data needs to be set aside to test the function on. We

found thresholding to be useful in reducing the effects of

input noise (see Figure 3.20). Hard thresholding is

particularly effective at reducing the network to the

smallest possible size.

The biggest problem with thresholding is that it

introduces a new adjustable parameter into the algorithm.

The threshold changes according to the data, so it is

difficult to find the correct value. Heuristics are usually

employed to determine a reasonable threshold. One such

heuristic could be the elimination of a certain percentage of

the wavelet units. Depending on the application, the

benefits of pruning may be worth the additional trouble of

determining a proper threshold.

99

1.4

1.2 -

1 -

O.S - -

o.a - -

0.4 - •

O.S

o
0

■

O.I 0.2 o.a 0.4 0.6 O.S 0.7 o.a O.S 1

Network Approximation on Noisy Data

1.4 I 1- i i

O O.I 0.2 0.9 0.4 O.S o.e o.7 o.a O.O 1

Approximation After Pruning with Threshold = .025

Figure 3.20 Removing Data Noise Using Hard Thresholding

100

Chapter 4 Multi-Dimensional
Networks

In this chapter we will scale up the one dimensional

network from Chapter 3 into a general network. This network

will be capable of handling n inputs and m outputs with m and

n being natural numbers. This change will entail a •

broadening of some of the concepts discussed in Chapter 3.

4.1 Multiple Inputs

The incorporation of multiple inputs allows us to go

beyond the simple one-dimensional approximations and use our

network on a much wider array of functions. Accomplishing

this will only take a few modifications. To keep continuity,

we will organize this section among the same dividing lines

as represented in Figure 3.1, discussing only the portions of

the previous algorithm which need to be modified for the n-

dimensional context.

4.1.1 Determining Hit Wavelets With N-Dimensions

The basis functions that will be used for a n-

dimensional network will be n-dimensional themselves. By

looking back at Section 2.1.3, we see that these new

orthogonal bases are just the tensor products of the one

dimensional wavelets presented earlier. As an example, when

expanding to two dimensions the resulting equations for the

basis will be:

101

Given Y(x), <X>(x)

•CO ¥(x2)

<E>(x.) •(x,)«« OCx^Cx,)

¥(x.) ^(X^OCXj) ^(x,)^(x2)

Scaling Function : &(xlx2) = $(xl)&(x2)

Wavelets:

f(V2)=o^mx2)

We can keep the same wavelet description with the minor

change of the element Location now storing an n-vector.

ID Number Location Coefficient Hits Error

Wavelets are now set in a fixed n-dimensional hyper-

cube. This hyper-cube is set up in the same manner: the

wavelet in resolution one spans the hyper-cube and each

resolution above it has wavelets that are half the size of

the wavelets from the previous resolution. While we relied

upon there only being two potential wavelets at the next

highest resolution for each wavelet before, we now have to

use the more general rule of 2° potential wavelets.

Finally, we use the same Equation (3.1):

102

nun, - \inPUt/ 1 num. — i /wavelet range \

to determine which wavelet in a given resolution level has

been hit. The only difference is that it must be used for

each dimension, or n times. This gives us the following

algorithm:

• coordinates is an empty vector of length n

• For dimension <— l:n

• coordinates(i) <- [wavelet_Z^oU^^«)]

where

coordinates is the location of the hit wavelet in the

given resolution level

wavelet_rangre is a value determined by the size of the

wavelet

T 1 is the ceiling function

4.1.2 Computing Wavelet Statistics With N-Dimensions

The computation of the statistics is the same

regardless of the input dimension. However, one thing that

does change with dimension is the number of statistics that

must be kept. In Section 4.1.1 we determined that each

wavelet will have 2° potential wavelets above it. That means

that each wavelet must keep statistics for each of those T

wavelets.

103

One other statistic is altered by multi-dimensional

wavelets: frequency data. While this was listed as an

enhancement in Chapter 3, it is an important part of our

network since it provides the generalization component. The

statistics such as hits and errors are the same regardless of

the shape of the wavelet. Data frequency information, on the

other hand, is directly related to the shape of the wavelet.

In the one-dimensional example using the Haar wavelet, there

were two regions to keep track of. Now frequency data must

be kept for 2" regions. The implications of this are that as

the input dimension increases, so does the amount of data

necessary to fulfill the data frequency requirements (since

there are more bins to fill). This is a necessary evil in

order to ensure that the multi-dimensional wavelets have

enough data to support their addition to the network.

J-

Figure 4.1 Data Frequency Bins for Two Input Dimensions

104

Figure 4.1 shows the four wavelets at the next higher

resolution of the initial resolution 1 wavelet (n = 2 so we

have 22 wavelets and 22 bins per wavelet) with the thick

dashed lines. The frequency bins for the wavelet in the

upper right are shown with thin dashed lines.

4.1.3 Training N-Dimensional Wavelets

Our new multi-dimensional wavelet bases can be trained

much the same way as their one-dimensional counterparts.

This is true because we are essentially training on the same

thing: the wavelet's value at the input vector vs. the target

value. These values are scalar regardless of the input

dimension. The only change in the computations is in

evaluating the wavelets bases at the input vector.

With the increase in dimension, we must now compute the

RLS A matrix a little differently (reference Sections 2.1.2

and 3.1.3.1). In one dimension we had to evaluate each

wavelet at the input location. What we are dealing with now

is a multi-dimensional wavelet created by the tensor products

of one-dimensional wavelets/scaling functions. Thus all we

need to do is take the product of each one-dimensional

function corresponding to the dimension component of the

input. The equation is:

»<2>=ii/(*,) (4-i}

105

where

a is the value to be placed in the A matrix or used

alone (with de-coupled RLS)

f is the one-dimensional function (wavelet or scaling)

d is the dilation of the function

t is the translation of the function

j is the dimension

x is the input vector

Xj is the input component for dimension j

RLS operates the same as before, taking the results of

Equation 4.1 along with the input and target vectors as input

and providing the new wavelet coefficients as output.

4.2 Multiple Outputs

While Section 4.1 concentrated on expanding our

algorithm to work with multi-dimensional input, a truly

general network will also need to be capable of dealing with

multiple outputs. Specifically, we want our algorithm to

have the ability to approximate a function with m outputs.

Given m outputs, we could break the problem down into m

separate functions. Therefore, one solution to this problem

is to have m different networks, one for each output.

However, every output has the same input vector. We would

like to capitalize on this by adjusting our algorithm to

accommodate multiple outputs, preventing the overhead and

106

loss of efficiency associated with multiple copies of the

network.

I
n
P
u
t

V
e
c
t
0
r

Network

larget vector
Maximum
Network
Structure

m target /
valiifts

» '

*

' MaxfError Vector) 1
i Approximation

Error Vector
, (m errors)

\ ' \ c- Min(Error Vector)

\
—»

Minimum
Network
Structure \ n inputs \ m outouts

Figure 4.2 Network Flow Chart With N Inputs and M Outputs

Figure 4.2 shows what our new general network looks

like. The input vector determines which wavelets are hit by

the input and where they are hit (for training and frequency

data purposes). The network component takes an input vector

in and produces in outputs according to the basis functions in

the network. The target values can be grouped together into

a vector that we will refer to as the target vector. This

vector and the network outputs are used to determine how well

the network is approximating the target functions, yielding

an approximation error vector. Each element in the error

vector corresponds to one of the m outputs. This error is

used to train the wavelet basis units to better resemble the

targets. If this were the only use of the network outputs,

107

then adding multiple outputs would be as simple as just

keeping m coefficients for each wavelet corresponding to each

of the outputs. Unfortunately, the approximation error

(which is dependent upon the outputs) is also used as part of

the criteria for building the network structure (see Section

3.2.3).

Since the structure of the network is directly related

to individual output values, it seems logical that separate

networks should be used, one for each output. However, this

is very inefficient since the computations associated with

finding hit wavelet units and updating their statistics will

be repeated m times. A method needs to be devised such that

the error information can be used to build a network

structure that satisfies all of the outputs. We have devised

two methods for doing this, the maximum network, and the

minimum network.

4.2.1 The Maximum Network Method

The maximum network method creates the maximum network

necessary to satisfy the requirements for all of the target

values. It is very easy to implement. Each wavelet keeps m

coefficients corresponding to each output. Network structure

is determined by taking the approximation error vector and

finding the maximum error. This is the error that is used to

determine which new wavelets should be added. This means

that wavelets will be added if any of the errors are above

the thresholds.

108

By basing the variable structure component of the

network on the maximum error, we do not lose any accuracy on

the approximated function. In fact, our accuracy will

actually improve since additional wavelets will be used to

approximate inputs which would not normally require them.

However, our overall efficiency is reduced since these

wavelets will be superfluous for most of the output

functions. In Figure 4.10 we see an example using two output

functions. If we use two separate networks we need to store

35 units and use 43 seconds of computation time for each

network (70 units and 86 seconds total). The maximum network

combined structure uses 47 units and takes 54 seconds to

approximate both outputs, and provides a little better

approximation since more wavelets are used.

The maximum network method is very basic and requires no

extra statistics, or overhead, to be kept for its use. It is

most successful in approximating functions whose output

structures do not differ significantly. In these cases the

loss of efficiency incurred by training many of the outputs

on a larger than necessary network will be lower than

training in networks of the various optimal sizes.

109

Output 1 Function Output 2 Function

0.8

0.6

0.4 IM/ \
0.2 0.4 . 0.6 0.8 0.2 0.4 0.6

?

Is

Output 1 Unit Locations
< XX KM MX X

XXXXXXXXXX XX

XXXXXXXX

6

s
>
£4
g
1.
2

Output 2 Unit Locations
X XX XX XX X

■XX XXXXXXXXXX

.XX XX XX X X

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

Two Outputs and Their Unit Locations

1
Output 1 Function

1
Output 2 Function

0.8 A- 0.8 ■A 0.6 / V 0.6
■/ \

0.4 AVnfi 0.4 rwlA
0.2 W 0.2 n

0 0
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Maximum Network Unit Locations
6 K MM KM MM MM MX MX K* M

I.
E

"5 >

2

XKKKKKKKKKKKKKXK

KM K K MK KK

X X X X

X X

I.
S
la
8

Maximum Network Unit Locations
KM KK M4 KK KK KK KK

K K K K K K K

X X X X

X X

0 0.2 0.4 0.6 0.8 1
If *

0 0.2 0.4 0.6 0.8 1

Figure 4.3 Comparison of the Maximum Network Method

110

4.2.2 The Minimum Network Method

The minimum network method combats the problem of using

individual networks by keeping the smallest network structure

that is common to all of the target values. This is created

by varying the network structure using the smallest of the m

approximation errors that are generated by the,network. An

additional m separate structures must be kept, consisting of

the wavelet basis units which must be added to the minimum

network in order to approximate the m-th output. Since we

are dealing with an orthogonal, multiresolution structure, it

is no problem to use separate additive structures in this

context.

This method gives us the smallest network necessary for

all m target values. Additionally, there is no redundant

storage of wavelets since the wavelets common to all of the

targets are stored in the minimum network. The real drawback

to the minimum network method is the increase in overhead

necessary to implement it. A mechanism is needed to

determine when a wavelet basis function is common to all of

the output structures, add it to the common network

structure, and remove it from the other structures. When m

is large, the loss in efficiency from this mechanism could be

prohibitive.

4.3 The Curse of Dimensionality

The most obvious result of allowing multi-dimensional

input/output is that the complexity of the algorithm

111

increases with the dimension. Many of the computations done

for a one-dimensional network must now be repeated for each

dimension. New network structures must be created to allow

multiple outputs. As if this weren't enough, we also have to

deal with the added complexity caused by multi-dimensional

wavelets. The curse of dimensionality manifests itself with

the exponential growth of wavelets as the input dimension is

increased.

We mentioned in Section 4.1 that wavelets are built upon

one another using the relationship that there are T potential

wavelets at the next highest resolution for every wavelet.

The multi-dimensional orthogonal wavelets from Chapter 2

require an additional 2"-l modes per wavelet. Each mode is

itself a wavelet at a different orientation from the other

modes. This means that every time we add a wavelet to the

network we are actually adding 2"-l wavelets each requiring a

coefficient to be kept (the other statistics are the same

among the modes). It is not difficult to see that in a

moderately high input dimension space, our network efficiency

is greatly reduced.

Reduced efficiency does not mean that our network is

unusable with a large input dimension. On the contrary, it

implies that a variable structure algorithm is necessary to

approximate in such an environment. With the dramatic

increase in the number of potential wavelets at higher

resolution levels, it is vital that those levels are only

embarked upon when the data absolutely requires it. In the

112

case of a multi-dimensional function which is complex in all

aspects of the function space, no network will have an easy

time approximating it.

The problem of T-l modes per wavelet can also be

combated. Certain orientations of the wavelets are going to

be much better suited to approximate the target function than

others. The orientations which contribute the most to the

approximation will have the highest coefficients. Once the

different modes have been trained with a certain number of

examples, it is then possible to prune the modes which have

low coefficients (see Section 3.3.4). If a mode is not

contributing much, the overhead required to keep track of it

is not necessary. With a good pruning threshold, each

wavelet's modes can be kept to the minimum necessary to

approximate the function to the desired accuracy. Thus while

the curse of dimensionality is daunting, it does not

invalidate our algorithm. In fact, we have used multi-

dimensional wavelets successfully while still being

efficient.

4.4 Some Results Using Multi-Dimensional Inputs

We will use this section to illustrate that our

algorithm has essentially remained unchanged; it still

performs the same in a higher dimension space. We will show

two-dimensional input Figures since these are the most easily

viewed. The target function was chosen because it has both

low and high frequency components. Additionally, it is a

113

smooth function, which is more challenging for the piecewise-

constant Haar wavelet. The approximations were wholly based

upon the error thresholds, meaning that they were allowed to

approximate to any resolution in order to achieve errors less

than the thresholds. These thresholds are input by the user

and were discussed in Section 3.2.3. The threshold for

average error ensures that the local average error of each

wavelet is below a certain level. The threshold for maximum

error forces each wavelet to have an average local maximum

error less than the threshold.

o o

Figure 4.4 The Target Function

114

Figure 4.4 shows the target function and Figures 4.5 - 4.7

show approximations of this function starting coarse and then

adding more and more details. The included tables show the

relevant statistics for these approximations

o o

Figure 4.5 Approximation # 1 (coarsest)

Approximation #1

Threshold for Average Error .05

user input Threshold for Maximum Error .1

results
Number of Wavelets Used 11

Computation Time 45 seconds

115

0 0

Figure 4.6 Approximation # 2

Approximation # 2

Threshold for Average Error .005

user input Threshold for Maximum Error .01

results
Number of Wavelets Used 60

Computation Time 74 seconds

116

0 o

Figure 4.7 Approximation # 3 (finest)

Approximation # 3

user input

results

Threshold for Average Error

Threshold for Maximum Error

Number of Wavelets Used

Computation Time

.0005

.001

235

133 seconds

117

Looking at the three approximations, it is clear that as the

error thresholds are reduced, a greater number of higher

resolution wavelets are required. Approximation one is very

crude and boxy, but it still successfully captures the

essential features of the target function. As we reduce the

error thresholds, finer details are brought out in the

approximation by the higher frequency wavelets.

Approximation two reduces the error from approximation one by

73%. Approximation three's error is only 9% of approximation

one's error. Figure 4.8 shows that approximation one only

uses 11 wavelets while approximation 3 needs 235 wavelets to

achieve its desired accuracy. We can see the same type of

phenomenon with the one-dimensional data in Figure 2.2. The

advantage of our algorithm is that the variable structure set

up is the same regardless of the input space dimension.

Chapter 5 will show additional results by applying our

algorithm to a more realistic problem.

118

Approximation # 1

1

0.9
X M M X

0.8
 >

0.7

X

0.6

0.5

0.4 X

0.3

0.2 .
X

0.1

n i 1

0.1

Approximation # 3

1
K X X X X X X X X X X X X

o.e
]
. K

3
X

)
X X X X X X X X

(
X

K X K X X X X X X X X ,fx X X

0.8
X X X X X X X X X X X

0.7 L * X X X X X X X
X

X X X

X X K X X X X X X X ■ Tx
X

0.6 - X
 9

K X X
)

X X X X K
 :

X X
s

0.6
K X X X X X X X X X

M
X

X X X X
K

X X X

0.4 X X X X X X

M l" X
X X X X X X

0.3
X X X X X X X X

0.2 X X X
X K X X X X X

K X X X X X X

0.1
X

X X X X X X X
x x

X X x l.x X X , X

° D 0.1 0.2 0. 3 0.4 0 .6 0.6 0.7 0. 8 0.9 1

Figure 4.8 Wavelet Coverage for Approximations # 1 and # 3

119

120

5 Reinforcement Learning Experiments

The previous chapters have relied upon simple functions

and examples to illustrate the different features of our

algorithm. In this chapter we will now apply our algorithm

to a more difficult and realistic problem and see how it

fares with the increased complexity and limitations imposed.

Reinforcement learning was chosen because of its interesting

problems along with the fact that neural networks are often

used as components in these types of problems.

5.1 The Puck on the Hill Problem Description

A well known problem used in reinforcement learning

trials is the puck on the hill problem.

2.5

1.5

0.5

-0.5.
-20 -15 -5 0

position (>0
15 20

Figure 5.1 Depiction of the Puck on the Hill Problem

121

Like the title indicates, the problem consists of a puck that

must climb a hill (see Figure 5.1). The puck can be pushed

either forward or backward. The hill is purposely too steep

and the maximum allowable force too small to simply push the

puck up the hill. Instead, some momentum must be gained

first. The specifics of the problem are:

States:
Position (x) : [-20, 20] meters
Velocity (v) : [-5, 5] meters/second
Control (u) : [-1, 1] newtons

Hill; [x > 0 : 1 - cos(x * 7C/20)
x <= 0 : 0]

example:

x h dx/dh
0.0 0.0 0.00
5.0 0.3 0.11
10.0 1.0 0.16
15.0 1.7 0.11
20.0 2.0 0.00

Misc:
Weight of Puck: 1 kg
g = 9.8 m/s2

When starting at x = 0.0, v = 0.0 and using u = 1.0 (maximum

forward force), it is only possible for the puck to move as

high as x = 10.5. The solution to the problem is to first

move the puck backwards and accelerate along the flat portion

of the space before encountering the hill.

5.1.1 Normalizing the Data for Use with Our Network

Before we can apply the problem in Section 5.1, the data

must be normalized to work with our network. In Section

3.1.1.2 we discussed the reasoning behind our network needing

122

normalized data. This in no way changes the problem, it is

just a step that formats the data so that the algorithm can

rely upon certain boundaries. In our case, this

normalization is easy. We already have explicit boundaries

for the problem. All we need to do is scale the input data

so that it is between 0 and 1 (see Equation 5.1).

data — min ,_ „, normdata = ;— (5.1)
max- mm

where

data is the input to be normalized

min is the smallest allowable input value

max is the largest allowable input value

5.2 Learning the State Transition Function

In reinforcement learning terms, the state transition

function is the function which determines what the next state

is. Given a state-action pair:

{states} X {actions} -» {states}

The interesting thing about this function is that in

reinforcement learning problems it is not known by the

learning agent. The learning agent must explore the state-

action space to build an internal model for the environment

[13]. This idea makes reinforcement learning particularly

attractive for problems in which we do not know or cannot

easily define the state transition function.

Some algorithms have been proposed to use this state

transition model to improve the efficiency of reinforcement

123

learning [15]. The idea is that if this model can be learned

and accessed independently by the learning agent, it can be

used to simulate future actions by the agent. These future

actions could be considered a sort of implicit planning by

the agent to find the best path to the goal state without

necessarily visiting every path and performing,backups [12].

The result is a much faster and efficient way for the agent

to solve the problem.

The puck on the hill problem has a known transition

function (Equation 5.2) but for the purposes of representing

it as a reinforcement learning problem it is assumed that

this function is unknown.

L J l+slope*

v[t+l] = v[t] + a[t]Al (5.2)

x[t + l] = x[t] + v[t]-At

where

u[t] is the control at time step t

a/"t7 is the acceleration of the puck at time step t

v[t] is the velocity of the puck at time step t

x[t] is the position of the puck at time step t

At is the size of the time step

For this experiment, we will attempt to learn the transition

function for the puck on the hill problem. This will require

a network with three inputs (current position, current

velocity, and control) and two outputs (new position, new

velocity). Figure 5.2 shows a graphical representation of

the network.

124

Wavelet Based Neural Network

current position \X) i
 > new position (x')

current velocity \y) *

 »new velocity (v')
| control (u) »

Figure 5.2 State Transition Network Layout

The agent is assumed to have no knowledge of the state

transitions and all information is gleaned through

exploration along trajectories. Each trajectory begins at a

random state and a specified number of random actions are

generated. For each action along this trajectory, the

network is queried, giving its estimate for the next state

and then trained using the state that the agent actually

transitions to. After a specified number of trajectories,

the network is tested to see if it can approximate the

transitions necessary to solve the puck on the hill problem.

The state transition problem was set up using random

initial positions and trajectories of length 20 (the network

trains on 20 actions from the initial position)". At every

1000 epochs we used a simulation to test performance. The

simulation used known trajectories of length 15. The network

began in the start state of each trajectory and used the same

actions. The end state of the model was then compared to the

end state of the actual system to determine if the simulation

was a success. Since continuous data was used, an error

margin of ten percent was used to make the problem more

125

feasible. To pass the simulation, ten trajectories had to be

successfully negotiated within the error margin.

200

500 1000 1500 2000 2500 3000 3500 4000
Epoch

500 1000 1500 2000 2500 3000 3500 4000
Epoch

Figure 5.3 Learning Results for State Transition Function

The network performed well on the state transition

function trial. As seen in Figure 5.3, training completed

after 4000 epochs. At completion, the network was able to

successfully follow all ten simulated trajectories. The

error plot in Figure 5.3 shows the sharp spike in error while

the network is still too small to learn the transition

functions. As units are added, the error decreases rapidly,

ending with a long period of fine tuning as the network

learns the additional information. It is interesting to note

126

that after approximately 900 trajectories, the network added

all of the units necessary for the approximation. While the

results of this experiment were good, the time taken to

complete training was not. The network needed 16.4 hours to

train on 4000 trajectories (approx. 1.4 data vectors per

second) . The dimension of the problem (3 input and 2 output

dimensions) caused this poor time performance. Chapter 4.3

discusses the curse of dimensionality associated with this

algorithm and this test unfortunately supports those

warnings. In the recommendations section of Chapter 6 we

will talk about how this problem can be combated.

5.3 Learning the Puck on the Hill Problem

Section 5.2 allowed us to test our algorithm on an

application useful in the realm of reinforcement learning.

However, the problem was basically a multi-dimensional,

supervised learning problem. It really doesn't allow us to

see how applicable the algorithm in this thesis is to a true

reinforcement learning problem. To remedy this, we will use

our algorithm to learn the puck on the hill problem. Q-

learning will be used for this example. Russell and Norvig

provide an excellent tutorial on reinforcement learning and

Q-learning [13] .

One of the interesting differences of reinforcement

learning problems is that they require a network to be

tolerant of non-stationary data. Non-stationary data is just

that, it does not always give the same output for the same

127

input. Often times this is associated with some type of

error in the measurement, but in this case it is caused by

the fact that the network has very little information

initially. The Goal_State contains all of the information

and the other states are defined by their relative distance

from it. Until the Goal_State is actually visited and enough

epochs have passed to allow that information to propagate

backward, any query to the network will result in bad

information. Thus the longer the algorithm trains, the

better the information should get.

To allow for non-stationary data, we employed the age-

weighted RLS training algorithm from Section 2.3. Equation

2.20 restated is:

prl=*p,i+ATA <5-4>

From this, we can see that the inverse covariance matrix (P~)

is discounted at each iteration, weighting the newest data

the highest. Before diving right into the puck on the hill

problem, we tested the algorithm on some simple training sets

simulating non-stationary data.

5.3.1 Testing the Network with Non-stationary Data

Before testing on a full-fledged reinforcement learning

problem we first tested the network's capabilities with some

simple test sets of non-stationary data. We created test

sets that start out with very bad data and then progressively

get better, ending with accurate data. There are other ways

to perform this type of test, but this method closely

128

simulates the nature of reinforcement learning, with very bad

values in the beginning and better values as time goes by.

What we are looking for is the network to remain stable and

be able to adjust its parameters to compensate for the

fluctuating data. Also, given enough good data, we want the

approximation to eventually converge to the target function.

The first example set was created by adding a constant

value to the target function, y(x) = sin(27tx):

Data Points 1-1000 : sin(2rcx) + .5
Data Points 1001-2000 : sin(2rcx) + .25
Data Points 2001- ... : sin(2rcx) (the target function)

We will call this the constant value test. Figure 5.3 shows

this graphically.

1.5

0.5

?

-0.5

. Data 1-1000
•Data 1001-2000
Target Function

0 0.1 0.2

Figure 5.3 Non-stationary Data Used for Constant Value Test

129

1.5 r

Approximated Function

0.5

. Data 1-1000
. Data 1001-2000
- Target Function

70

60

,§50

240 o

130

Z20

10

0
r

1000 2000 3000 4000
Number of Examples

6000 6000

1000 2000 3000 4000
Number of Examples

5000 6000

Figure 5.4 Results of Constant Value Test

130

Our network was able to converge to the target function.

However, it needed nearly twice the amount of good data as

bad data to get within the .0125 error threshold for the

target function (see Figure 5.4). Another notable phenomenon

was the large increase in wavelet basis units as the data

sets changed. This is due to the large errors/involved with

the drastic changes at data points 1000 and 2000 and violates

our initial assumption that errors are due to insufficient

wavelet basis functions. Thus when using this algorithm with

non-stationary data, another heuristic for adding units must

be used.

The second example set was created by shifting the

target function, y(x) = sin(270c):, by a constant value along

the input axis:

Data Points 1-1000 : sin(2rc (x - .2))
Data Points 1001-2000 : sin(2rc (x - .1))
Data Points 2001- ... : sin(2rcx) (the target function)

We will refer to this as the shifted data test. This set

should be a little more difficult for the network to

approximate because now not only do the coefficients need to

be adjusted, but also the units responsible for each portion

of the function will change.

Our network was also able to converge to the target function

of this example set. It exhibited the same jumps in unit

additions as the previous set. Again, this is due to the

large errors associated with the drastic changes in the

relative target functions. Finally, this example set

131

Data 1-1000
-Data 1001-2000
Target Function

Figure 5.5 Non-stationary Data Used for Shifted Data Test

required even more good examples (approximately 6000, or

three times as many) to get below the .0125 error threshold

(see Figure 5.6). This is most likely due to the more

difficult nature of the data set.

Figures 5.4 and 5.6 clearly show the approximation

approaching the target as more good data is presented to it.

If our error thresholds were set lower, the approximations

would have been even closer to the targets (and the amount of

good data required would have increased) . However, these

results are good enough to show that the network will remain

stable and converge to the target values when experiencing

non-stationary data.

132

Approximated Function

.. Data 1-1000
-. Data 1001-2000
- - Target Function

60

50

140

130
.o
§20
Z

10 r

/

1000 2000 3000 4000 5000
Number of Examples

6000 7000 8000

1000 2000 3000 4000 5000
Number of Examples

6000 7000 8000

Figure 5.6 Results of Shifted Data Test

133

5.3.2 The Reinforcement Learning Problem

In this section we are ready to test our network with a

real reinforcement learning problem. To do this we used the

puck on the hill problem presented in section 5.1. However,

we modified the problem somewhat to reduce the complexity and

to facilitate the use of Q-learning.

First, we reduced the action set to bang-bang control,

allowing only a maximum force forwards (1) and a maximum

force backwards (-1). Then we discretized the state space,

allowing 81 states for position and 21 for velocity. This

makes Q-learning feasible by making it possible to find the

function maximum easily. The problem description remains the

same.

The network used for the problem will be a two input,

two output Haar wavelet network. The inputs are position and

velocity, and the outputs are the Q-values for each allowable

action (forward or backward). Simply put, the two outputs

Wavelet Based Neural Network
current position (x) 1 » Q-value for Action 1

current velocity (v) 1 » Q-value for Action 2

Figure 5.8 Puck on the Hill Network Layout

tell the controller the quality of each action, so it can

determine which action for a given state will bring it closer

to the goal. The algorithm for this problem is as follows:

134

• Gamma <- 0.9
• repeat

• Generate a random state
• Generate a random action
• next_state <- transition_function(state, action)
• if next_state = Goal_State

reinforcement <— 30
else

reinforcement <- -1
• current_g <- feedforward_net(state, action)

• next_q <-
max(feedforward_net(next_state, {actions}))

• update <— current_q + Gamma •
{reinforcement + next_q - current_q)

• train_net(state, action, update)

where
feedforward_net is a function that finds the

network output for a given state-action pair

update is the Q-learning update that the network
will be trained upon

train_net is a function that trains the network
coefficients to better represent the data

5.3.2.1 Results of the Puck on the Hill Problem

The target functions for our discretized version of the

puck on the hill problem are shown in Figures 5.7 and 5.8.

The solution of our reinforcement learning problem does not

require us to learn the target functions exactly. They

simply need to be learned well enough that the network can

determine the correct action for every state. In our test,

we used a simulation to determine if the approximations were

learned well enough. The simulation was conducted by

choosing a random initial state. The network was then tasked

to reach the goal state using 16 actions or less. When the

135

Position (Normalized) 0 0

0.4

Velocity (Normalized)

Figure 5.7 Target Function for Action # 1

Position (Normalized) 0 ^0

0.4

Velocity (Normalized)

Figure 5.8 Target Function for Action # 2

136

network is able to reach the goal state using ten random

starting points, training ends.

Our network needed 8000 epochs and 45 wavelet basis

units to succeed in the simulation. Like our experiment in

Section 5.2, the network was exceedingly slow, taking 1.01

hours to solve the problem (approx. 2.2 data vectors per

second) . However, this is probably due much more to the type

of problem (many queries to the network have to be made for

each epoch) than to the dimension of the data. The plots of

the output approximations can be found in Figures 5.9 and

5.10. While they are not perfect approximations, they are

good enough to allow the controller to make the correct

decisions. Figure 5.11 shows the number of basis functions

used by the network as a function of epoch.

Position (Normalized) 0 0 Velocity (Normalized)

Figure 5.9 Approximated Function for Action # 1

137

. ..-•
.*•**" *••,...

• **•** ■•■'' ; ..'•""" ; "•• " *•.. • •...

30^ _...•••"" • •""""
. • • ■' 1

• u^^tffi ^SM BSi.-. tfUfr si * *^,
28 v ..-••"."" ■ERfet '

26 v ..•••""' * J

vln .. .^jÄRmlmf
» 24„

■a

322- Jnf**>

20^ f/Hilr^
'••. : 'v.. :

18^ pP:
* *» * * *•. •

16^.••".. " |^^JJ5 ̂ ^^EEnH9*f * ti'*
., •""'••..: 'i

1*^\^ ..•••'"•.. ..!
■'■"'•'•. ''.'.-'•'•

.-••■

.I»*** *"•.•
O*»*^. ..--•''

• * t.
.■■■'''■'. . * 11 ^ * . ^^^^^^^^

0.6^Ss\s^••
"'■'.. .'.'■••'■'.'

■••. x~^~~®z

0.4

Q.25^
**—W—"—~""o.2

""""o.4
0.6

F 'osRion (Nc rmalized) 0 0 Velocity (Normalized)

Figure 5.10 Approximated Function for Action # 2

1000 2000 3000 4000
•poch

6000 7000 SOOO

Figure 5.11 Unit Count for Puck on the Hill Problem

138

6 Summary

6.1 Conclusions

The motivation for this thesis was to develop a compact

network structure that could be used with on-line

applications while being fast as well as computationally and

spatially efficient. On-line training was taken care of by

the Recursive Least Squares algorithm, which also provided an

efficient way to process input data. Variable structure and

multiresolution provide the compact network structure. Haar

wavelets and de-coupled Recursive Least Squares were used to

make things faster and simpler. How well these components

worked together is shown by both the successes and failures

of the network on the testing material.

6.1.1 Overall Results

With all things considered, the algorithm performed well

in its trials. The success of the algorithm with variable

structure was very pleasing. Our algorithm not only has the

ability grow to match the needs of the input data, it is able

to perform that growth based upon desired error thresholds.

The examples in Chapters 2 and 3 clearly show the different

approximations determined by different error thresholds. The

algorithm also met our criterion for a fast algorithm, at

least at lower input dimensions. At input dimensions one and

two, the network was able to train on 15-30 data vectors per

second, with only one pass through the data necessary.

139

Simple, orthogonal wavelets and RLS takes much of the credit

for that. So with these things in mind, it is reasonable to

declare that this algorithm met its expectations. However,

it is not without its faults.

There is no doubt that we also experienced difficulties

with this algorithm. Perhaps the largest of these was the

significant drop in performance with higher dimensional data.

While not expressed in the requirements, there was the

implicit hope that the algorithm would perform equally well

on higher dimensional inputs. As seen in the Section 5.2

model approximation, the curse of dimensionality does take

its toll on the algorithm. The three input, two output

network was much slower than anticipated. However, the

network result was still accurate and still had the good

generalization that was displayed in our lower dimensional

examples. Future work resulting in better variable structure

techniques and different wavelet basis functions may

alleviate this problem.

While Chapter 5 showed that our algorithm is capable of

learning non-stationary data, it showed that it did not have

a proclivity for it. This is most likely caused by the

weighting used in the training algorithm (RLS) along with the

additive network structure. The simple tests along with the

length of time required to learn the value functions for a

relatively simple reinforcement learning problem indicate

that the algorithm is probably most useful in supervised

learning problems with stationary data. While these problems

140

were unforeseen, they do not invalidate the success the

algorithm displayed in our other examples. They are best

regarded as important knowledge on the limitations of our

algorithm.

6.1.2 Final Assessment

I believe that we accomplished in this thesis what we

set out for. While the network's performance is not

extraordinary, its novel design and components are definitely

useful. The network performs the way it was designed to, the

next step is to use some of the elements in the next section

to improve upon it.

At the very least, portions of this network will be

useful in the future designs of other networks. There is an

undeniable need for this sort of orthogonal, variable

structure framework. There is no doubt that this is not the

last paper on this topic; hopefully parts of it will

influence other solutions.

6.2 Recommendations for Future Research

6.2.1 High Dimensional Data

• Mode Determination. One of the most detrimental aspects of
the "curse of dimensionality" for this algorithm is the T-
1 modes which make up the orientations of each wavelet in
the n-dimensional space. It is reasonable to assume that
the wavelets will only need a small number of those
orientations to accurately approximate the input data. A
clever way is needed to determine which orientations are
necessary. This will reduce the size of the network and
make it much more efficient.

141

• Non-separable Wavelets. These wavelets deal with the same
problem discussed above, wavelet modes. In this thesis we
used separable wavelets, meaning that they were built using
the tensor products of one-dimensional wavelets [8, 14].
Non-separable wavelets eliminate the need for wavelet modes
altogether. These wavelets are more complex than the ones
used in this thesis, but in multi-dimensional space they
save T-l coefficients per wavelet.

• Encoding of Frequency Data. A better way to encode
frequency data must be found. In high dimensional networks
the amount of frequency data that must be kept becomes very
large. Currently we encode the information as bits,
limiting the amount of information able to be kept for each
wavelet to the maximum integer size of the machine. On our
platform this limits the allowable input dimension to 5.
One possible way to encode the data is to use an additional
n-dimensional matrix for each wavelet unit, but this_
becomes a storage concern. The use of Huffman encoding or
a similar, more efficient way to represent bits would be a
better choice.

6.2.2 Non-Stationary and Adverse Data

• Removal of wavelets. In the case of changing, or non-
stationary data there may come a time when wavelets that
were once necessary for the approximation are no longer
needed. Our algorithm has no means, save pruning, to
remove wavelets intelligently. One easy option is to
remove the top resolution levels at various times, forcing
the algorithm to grow according to the new data. However,
wavelets that are still useful will be removed this way,
significantly affecting performance. Another idea is to
keep track of the last time a wavelet basis function was
hit by data, and prune according to this value. A good
basis function removal heuristic would increase the
applicability of our algorithm.

• improved aae weighting. The RLS age weighting discussed in
section 2.3.3.1 allows us to use a discounted age weighting
scheme in RLS. However, after a short time, this weighting
converges to constant steady-state values. In applications
such as reinforcement learning, the new data must be
weighted much more heavily than older data since it
contains better information. A better weighting scheme
could allow this algorithm and RLS to be much more amenable
to reinforcement learning applications.

• improved inactive wavelets. Inactive wavelets are useful
for implementing the spirit of this algorithm which is to

142

place the correct size wavelet for the given data.
Unfortunately, our multiresolution structure and the data
that we need to keep for each wavelet only allows us to
skip one resolution at a time (placing a unit a quarter of
the size of the currently smallest wavelet). A better
algorithm would allow any size wavelet to be placed above
the current wavelet. However, this becomes a problem if
more data arrives later, necessitating a larger wavelet
which could make the previous addition of the smaller
wavelet superfluous. A wavelet removal algorithm could be
used in conjunction to prevent this problem..

143

144

Appendix A Least Squares and the
Discrete Wavelet Transform

The purpose of this appendix is to show mathematically
that the Discrete Wavelet Transform is equivalent to Least
Squares under these conditions:

Assumptions:
• Orthonormal basis (n basis functions)
• The Basis is covered by data that is finite,

discrete, sufficiently dense and uniformly
distributed (k data points)

• Training examples are supervised, i.e., an
example looks like (zjf bd), where zi = j'-th input
and bj = j-th target value

Using Equation 2.3 from Section 2.1.1, the Continuous Wavelet
Transform for an orthonormal basis is:

x' = \a\z) b (z) dz (A.l)

where
ai(z) is the i-th basis function

b(z) is the target function

x1 is the coefficient of the i-th wavelet

Since we are using discrete data, Equation A.l must be
modified to give us the Discrete Wavelet Transform,
which takes the form

where
K[is a normalization factor necessary to account for

the loss of normality during sampling of the basis
function a!(z)

145

Equation A.2 can also be written in vector form:

x[= KH)Ttk (A-3)

where
a[is Basis Function Vector such that

a'k=[a'(Zl) a\z2) - a'(zk)f

hk is the Data Vector for data point k such that

£* = [*.(*.) hizi) - bk(Zk)f

2£k is the Coefficient Vector for n basis functions
after k data points such thatxt=[xj x\ ••• xn

k\

It is now necessary to determine what K[will be in
Equation A.3

Example: Assume data (hk) falls exactly on basis function
(a'k), i.e., they are equivalent. In this case, we
would like to normalize Equation A.3 such that the
coefficient x[evaluates exactly to 1:

xi
k = K(a'k)

Tbk = K(ai
k)

Tak = l -* ^ = 77^" <A'4>

J\Ti 1 _(akrh
(sifsl 4==hrt <A-5>

For Least Squares we want to find the solution, x, to the
system such that |Ax-fc| is minimized. For an
overdetermined system, the solution is:

xk=(Ak
TAky

lAk
Tbk (A. 6)

where

Ak is the Basis Function Matrix such that ^4^= fa}. a\ ••• aj]

146

If we expand Equation A.6, we get:

(£f~

At At—

n\T K)

[si & - «*] = (A.7)

From Section 2.1.2, Equation 2.5 we see that-if a£ and a9
k

are orthogonal, then:

(äkfäl = ° for P*2 (A.8)

(i.e., orthogonal basis functions have inner products that
are zero).

Using Equation A.8 with Equation A.7 gives us:

At At

(sD'si o

0 (alfal

Equation A.9 is now very easy to invert, becoming:

1

(VAO-1 =
o

o

l

(&) «*

(A.9)

(A.10)

Plugging Equation A.10 into Equation A.6 gives us:

** =

1

k

0

0

1

(stfsSJ

l\T'

(«If

mr]

W
(if A

h = •

(*n
kfbk

l<s!)T&

(A. 11)

147

From Equation A.11 we can now decouple the coefficients
for individual, orthogonal basis units:

Equation A. 12, the Least Squares solution, is identical to
Equation A.5, the Discrete Wavelet Transform Solution!
Therefore, Least Squares = Discrete Wavelet
Transform under our assumptions.

148

References

[1] Bakshi, Bhavik R., Alexandres Koulouris, and George
Stephanopoulos (1994). "Wave-Nets: Novel Learning
Techniques, and the Induction of Physically
Interpretable Models", SPIE, Vol. 2242, pp. 637-648.

[2] Bakshi, Bhavik R., Alexandros Koulouris, and George
Stephanopoulos (1995). "Empirical Learning Through
Neural Networks: The Wave-Net Solution", Advances in
Chemical Engineering, Vol. 22, pp. 437-483.

[3] Cybenko, G. (1989). "Approximation by Superpositions of
a Sigmoidal Function", Math. Control Signal Systems,
Vol. 2, pp. 303-308.

[4] Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM.

[5] Daubechies, I. (1988). «Orthonormal Bases of Compactly
Supported Wavelets", Communications on Pure and Applied
Mathematics, Vol. XLI, pp. 909-996.

[6] Hubbard, Barbara Burke (1996). The World According to
Wavelets, A K Peters.

[7] Kovacevic, J. C, and M. Vetterli (1992). "Non-
separable Multi-Dimensional Perfect Reconstruction
Filter Banks and Wavelet Bases for Rn", IEEE
Transactions on Information Theory, Vol. 38, Number 2,
pp. 533-542.

[8] LiMin, Fu (1994). Neural Networks and Computer
Intelligence, McGraw-Hill.

[9] Livstone, Mitchell M. (1994). Wavelets; A Conceptual
Overview, CSDL Report R-2602.

[10] Mallat, Stephane G. (1989). "A Theory for
Multiresolution Signal Decomposition: The Wavelet
Representation", IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 11, Number 7, pp. 674-
693.

[11] Müller, Peter and Briani Vidakovic (1991). "Wavelets
for Kids", Institute of Statistics and Decision
Sciences, Duke University, pp. 1-26.

[12] Peng, Jing and Ronald Williams (1993) . "Efficient
Learning and Planning Within the Dyan Framework",
Adaptive Behavior, Vol. 1, Number 4, pp. 437-454.

149

[13] Russell, Stuart and Peter Norvig (1995). Artificial
Intelligence: A Modern Approach, Prentice Hall.

[14] Strang, Gilbert (1986). Introduction to Applied
Mathematics, Wellesley-Cambridge Press.

[15] Sutton, R. S. (1990). "Integrated Architectures for
Learning, Planning, and Reacting Based on Approximating
Dynamic Programming", Proceedings of the Seventh
International Conference on Machine Learning, Morgan
Kaufmann.

[16] Zhang, Qinghua and Albert Benveniste (1992). "Wavelet
Networks", IEEE Transactions on Neural Networks, Vol. 3,
No. 6, pp. 889-898.

150

